Что это pn – S — серии, SDR, PN классификации и классы труб — маркировка пластиковых труб. Полимерные (пластиковые) трубы — классификации по прочности или толщинам стенки. PE, PP, PEX, PVC, ПВХ, ПЭ, ПНД, ПП, PB, ПБ и прочие полимерные трубы

Содержание

p-n-переход — Википедия

p-n-перехо́д или электронно-дырочный переход — область соприкосновения двух полупроводников с разными типами проводимости — дырочной (p, от англ. positive — положительная) и электронной (n, от англ. negative — отрицательная). Электрические процессы в p-n-переходах являются основой работы полупроводниковых приборов с нелинейной вольт-амперной характеристикой (диодов, транзисторов и другихПерейти к разделу «#Применение»).

Энергетическая диаграмма p-n-перехода. a) Состояние равновесия; b) При приложенном прямом напряжении; c) При приложенном обратном напряжении.

В полупроводнике p-типа, который получается посредством акцепторной примеси, концентрация дырок намного превышает концентрацию электронов. В полупроводнике n-типа, который получается посредством донорной примеси, концентрация электронов намного превышает концентрацию дырок. Если между двумя такими полупроводниками установить контакт, то возникнет диффузионный ток — основные носители заряда (электроны и дырки) хаотично перетекают из той области, где их больше, в ту область, где их меньше, и рекомбинируют друг с другом. Как следствие, вблизи границы между областями практически не будет свободных (подвижных) основных носителей заряда, но останутся ионы примесей с некомпенсированными зарядами

[1]. Область в полупроводнике p-типа, которая примыкает к границе, получает при этом отрицательный заряд, приносимый электронами, а пограничная область в полупроводнике n-типа получает положительный заряд, приносимый дырками (точнее, теряет уносимый электронами отрицательный заряд).

Таким образом, на границе полупроводников образуются два слоя с пространственными зарядами противоположного знака, порождающие в переходе электрическое поле. Это поле вызывает дрейфовый ток в направлении, противоположном диффузионному току. В конце концов, между диффузионным и дрейфовым токами устанавливается динамическое равновесие, и изменение пространственных зарядов прекращается. Обеднённые области с неподвижными пространственными зарядами и называют

p-n-переходом[2].

Перейти к разделу «#Применение» Устройство простейшего прибора, основанного на p-n-переходе — полупроводникового диода — и его символическое изображение на принципиальных схемах (треугольник обозначает p-область и указывает направление тока).

Если к слоям полупроводника приложено внешнее напряжение так, что создаваемое им электрическое поле направлено противоположно существующему в переходе полю, то динамическое равновесие нарушается, и диффузионный ток преобладает над дрейфовым током, быстро нарастая с повышением напряжения. Такое подключение напряжения к

p-n-переходу называется прямым смещением (на область p-типа подан положительный потенциал относительно области n-типа).

Если внешнее напряжение приложить так, чтобы созданное им поле было одного направления с полем в переходе, то это приведёт лишь к увеличению толщины слоёв пространственного заряда. Диффузионный ток уменьшится настолько, что преобладающим станет малый дрейфовый ток. Такое подключение напряжения к p-n-переходу называется обратным смещением (или запорным смещением), а протекающий при этом через переход суммарный ток, который определяется в основном тепловой или фотонной генерацией пар электрон-дырка, называется обратным током.

Ёмкость p-n-перехода — это ёмкости объёмных зарядов, накопленных в полупроводниках на p-n-переходе и за его пределами. Ёмкость p-n-перехода нелинейна — она зависит от полярности и значения внешнего напряжения, приложенного к переходу. Различают два вида ёмкостей

p-n-перехода: барьерная и диффузионная[3].

Барьерная ёмкость[править | править код]

Барьерная (или зарядовая) ёмкость связана с изменением потенциального барьера в переходе и возникает при обратном смещении. Она эквивалентна ёмкости плоского конденсатора, в котором слоем диэлектрика служит запирающий слой, а обкладками — p и n-области перехода. Барьерная ёмкость зависит от площади перехода и относительной диэлектрической проницаемости полупроводника.

Диффузионная ёмкость[править | править код]

Диффузионная ёмкость обусловлена накоплением в области неосновных для неё носителей (электронов в p-области и дырок в n-области) при прямом смещении. Диффузионная ёмкость увеличивается с ростом прямого напряжения.

Взаимодействие радиационного излучения с веществом — сложное явление. Условно принято рассматривать две стадии этого процесса: первичную и вторичную.

Первичные или прямые эффекты состоят в смещении электронов (ионизации), смещении атомов из узлов решётки, в возбуждении атомов или электронов без смещения и в ядерных превращениях вследствие непосредственного взаимодействия атомов вещества (мишени) с потоком частиц.

Вторичные эффекты состоят в дальнейшем возбуждении и нарушении структуры выбитыми электронами и атомами.

Наибольшего внимания заслуживают возбуждение электронов с образованием электронно-дырочных пар и процессы смещения атомов кристалла из узлов решетки, так как это приводит к образованию дефектов кристаллической структуры. Если электронно-дырочные пары образуются в области пространственного заряда, это приводит к возникновению тока, на противоположных контактах полупроводниковой структуры. Этот эффект используется для создания беттавольтаических источников питания со сверхдолгим сроком службы (десятки лет).

Облучение заряженными частицами большой энергии всегда приводит к первичной ионизации и, в зависимости от условий, к первичному смещению атомов. При передаче высоких энергий электронам решетки образуются дельта-излучение, высокоэнергетические электроны, которые рассеиваются от ионного трека, а также фотоны и рентгеновские кванты. При передаче атомам кристаллической решетки меньших энергий происходит возбуждение электронов и их переход в более высокоэнергетическую зону, в которой электроны термолизируют энергию путем испускания фотонов и фононов (нагрев) различных энергий. Наиболее общим эффектом рассеяния электронов и фотонов является эффект Комптона.

Вплавление примесей[править | править код]

При вплавлении монокристалл нагревают до температуры плавления примеси, после чего часть кристалла растворяется в расплаве примеси. При охлаждении происходит рекристаллизация монокристалла с материалом примеси. Такой переход называется

сплавным.

Диффузия примесей[править | править код]

В основе технологии получения диффузного перехода лежит метод фотолитографии. Для создания диффузного перехода на поверхность кристалла наносится фоторезист — фоточувствительное вещество, которое полимеризуется засвечиванием. Неполимеризованные области смываются, производится травление плёнки диоксида кремния, и в образовавшиеся окна производят диффузию примеси в пластину кремния. Такой переход называется планарным.

Эпитаксиальное наращивание[править | править код]

Сущность эпитаксиального наращивания состоит в разложении некоторых химических соединений с примесью легирующих веществ на кристалле. При этом образуется поверхностный слой, структура которого становится продолжением структуры исходного проводника. Такой переход называется

эпитаксиальным[3].

  • А. П. Лысенко, Л. С. Мироненко. Краткая теория p-n-перехода / Рецензент: проф. Ф. И. Григорьев. — М.: МИЭМ, 2002.
  • В. Г. Гусев, Ю. М. Гусев. Электроника. — 2-е изд. — М.: «Высшая школа», 1991. — 622 с.
  • К. И. Таперо, В. Н, Улимов, А. М. Членов. Радиационные эффекты в кремниевых интегральных схемах космического применения. — М.: 2009 г. — 246 с.

прямой и обратный, их схемы

P-N переход — точка в полупроводниковом приборе, где материал N-типа и материал P-типа соприкасаются друг с другом. Материал N-типа обычно упоминается как катодная часть полупроводника, а материал P-типа — как анодная часть.

Схема P-N перехода
Схема P-N перехода
Обратите внимание на основы электричества и на приборы электроники.

Когда между этими двумя материалами возникает контакт, то электроны из материала n-типа перетекают в материал p-типа и соединяются с имеющимися в нем отверстиями. Небольшая область с каждой стороны линии физического соприкосновения этих материалов почти лишена электронов и отверстий. Эта область в полупроводниковом приборе называется обедненной областью.

Эта обедненная область является ключевым звеном в работе любого прибора, в котором есть P-N переход. Ширина этой обедненной области определяет сопротивление протеканию тока через P-N переход, поэтому сопротивление прибора, имеющего такой P-N переход, зависит от размеров этой обедненной области. Ее ширина может изменяться при прохождении какого-либо напряжения через этот P-N переход. В зависимости от полярности приложенного потенциала P-N переход может иметь либо прямое смещение, либо обратное смещение. Ширина обедненной области, или сопротивление полупроводникового прибора, зависит как от полярности, так и от величины поданного напряжения смещения.

Прямой P-N переход

Когда P-N переход прямой (с прямым смещением), то тогда на анод подается положительный потенциал, а на катод — отрицательный. Результатом этого процесса является сужение обедненной области, что уменьшает сопротивление движению тока через P-N переход.

Если потенциал увеличивается, то обедненная область будет продолжать уменьшаться, тем самым еще больше понижая сопротивление протеканию тока. В конце концов, если подаваемое напряжение окажется достаточно велико, то обедненная область сузится до точки минимального сопротивления и через P-N переход, а вместе с ним и через весь прибор, будет проходить максимальный ток. Когда P-N переход имеет соответствующее прямое смещение, то он обеспечивает минимальное сопротивление проходящему через него потоку тока.

Прямой P-N переходПрямой P-N переход

Обратный P-N переход

Когда P-N переход обратный (с обратным смещением), то отрицательный потенциал подается на анод, а положительный — на катод.

Это приводит к тому, что в результате обедненная область расширяется, а это вызывает увеличение сопротивления протеканию тока. Когда на P-N переходе создается обратное смещение, то имеет место максимальное сопротивление протеканию тока, а данный переход действует в основном как разомкнутая цепь.

Обратный P-N переходОбратный P-N переход

При определенном критическом значении напряжения обратного смещения сопротивление протеканию тока, которое возникает в обедненной области, оказывается преодоленным и происходит стремительное нарастание тока. Значение напряжения обратного смещения, при котором ток быстро нарастает, называется пробивным напряжением.

PN-переход | Свойство PN-перехода

Из первой части статьи мы с вами узнали, что транзисторы состоят из P и N полупроводниковых материалов.  В настоящее время PN-переход спаивается по специальной технологии, что  конечно же, увеличивает проводимость для электрического тока. Ширина этой спайки очень мала и достигает  одну тысячную миллиметра.

Свойство PN-перехода

Думаю, будет излишним рассказывать как на физическом уровне работает P-N переход. Это долго, муторно и непонятно. Да и вам это точно не пригодится). Самое главное

свойство P-N перехода – это односторонняя проводимость! Односторонняя ЧТО? ОДНОСТОРОННЯЯ ПРОВОДИМОСТЬ. Но что означает это словосочетание?

Давайте представим себе воронку, наподобие этой:

PN-переход

С какой стороны нам будет удобней наливать жидкость?  Думаю, что сверху, не так ли?  Тем самым мы переливаем нашу жидкость далее в какой-либо сосуд.

Ну а что будет, если мы перевернем нашу воронку и будем  наливать жидкость через узенькую трубочку таким же напором? Совсем малюсенькая часть жидкости попадет через узкую трубочку и окажется по ту сторону воронки. Остальная же часть тупо прольется мимо воронки.

А давайте теперь на секундочку представим, что вместо жидкости мы будем “наливать” электрический ток. С широкой стороны воронки ток прекрасно зайдет и потечет дальше через узенькую трубочку, а если перевернуть воронку совсем малюсенькая часть электрического тока протиснется на другой конец воронки, остальная же часть электрического тока “прольется” мимо воронки.

Так вот, дорогие мои читатели, P-N переход работает точно таким же способом, как и эта воронка! P – это широкая часть воронки, N – узкая часть воронки, ну то есть та самая тонкая трубочка.

Таким образом, подавая на “воронку” полупроводника P, плюс от источника питания (это может быть батарейка или Блок питания ) , а к N-полупроводнику, к узкой трубочке воронки, минус, то у нас ток течет как ни в чем не бывало.  Но как только мы поменяем полярность, то есть подадим на P  минус, а на N плюс, то у нас ток никуда не потечет. То есть цепь будет находиться в обрыве.

Диод, как простой PN-переход

А вам знаком вот такой радиоэлемент? 

PN-переход

а вот его схематическое изображение

Да, все верно – это Полупроводниковый диод. А знаете ли вы, что диод состоит из самого обычного P-N перехода? Можем даже вот так нарисовать диод:

Проведем опыт. Возьмем простой советский диод марки Д226:

Интересно, что же внутри у него?  На наждаке стачиваем одну треть корпуса диода, чтобы не повредить внутренности:

Интересно, где же этот PN-переход? С помощью цифрового микроскопа Prima Expert M100 увеличиваем  наш парированный диод и видим кристалл кремния. В красном кружочке я пометил этот самый кристалл.

pn-переход

Судя по книге Шишкова “Первые шаги в радиоэлектронике”,  PN-переход находится где-то здесь:

pn-переход

Хотя я увидел там только одну пластинку кремния. Видать полупроводники P и N сплавлены  в один бутербродик. Короче говоря, главное работает, остальное по барабану) .

Итак, классика жанра… Как вы видите на этой картинке, диод имеет анод и катод. Анод – это P полупроводник, катод – это N полупроводник.  Все элементарно и просто.

PN-переход

Односторонняя проводимость PN-перехода

Далее проведем классический опыт, который описывается во всех учебниках физики. Собираем цепь из Блока питания, лампочки и нашего диода вот по такой схеме (снизу перечеркнутый кружочек – это лампочка).

Теперь собираем эту схемку в реале. Красный щуп – это плюс от блока питания, черный щуп – это минус от блока питания.

Видим, что лампочка  на 12 Вольт загорелась. Это означает, что электрический ток течет через диод как ни в чем не бывало.

Теперь меняем щупы местами и собираем вот по такой схеме:

Собираем схему в реале. Подаем напряжение на щупы

Лампочка не горит. Ну ладно, не переживайте, ведь мы для себя сейчас открыли важнейшее свойство диода, а следовательно и PN-перехода! В одном направлении диод пропускает электрический ток, если подать на его анод плюс, а на катод минус. А если подать на анод минус, а на катод плюс – диод не пропускает электрический ток.

Как проверить целостность PN-перехода

Как проверить целостность PN-перехода, а соответственно и диода? Для этого ставим крутилку на Мультиметр е в режим прозвонки вот на этот значок :

В этом режиме измеряется падение напряжения. Прямое падение напряжения для кремниевых диодов  составляет значение от 0,5 Вольт  и до 0,7 Вольт,  а для германиевых 0,3-0,4 Вольта.

Цепляем анод у диода к положительному щупу мультиметра (красный Щуп), а катод цепляем к отрицательному щупу (черный щуп):

Итак, на дисплее мультика мы видим так называемое прямое падение напряжения PN-перехода. В данном случае оно равно 554 милливольта или 0,55 Вольт.

Если поменять щупы местами, то на дисплее мультиметра высветится единичка. Это значит, что падение напряжения в данном случае не влазит в диапазон измерения мультиметра в функции прозвонки. При функции “прозвонка” можно наблюдать падение напряжения только  в диапазоне от 0  и до 1999 милливольт ;-).  Мультиметр же выдает 2,8-3 Вольта в этом режиме.

Ну что же, диод у нас хоть и раздраконенный моими ручонками, но целый 😉  Тот же самый опыт я описывал в статье Как проверить диод мультиметром.

Зависимость падения напряжения на PN-переходе от температуры

Также у PN-перехода есть очень интересное свойство. Его прямое падение напряжения зависит от температуры.

Вот прямое падение напряжения на диоде при обычной комнатной температуре: 554 милливольта.

Начинаем жарить Паяльным феном при 200 градусах по Цельсию и смотрим на дисплей мультиметра:

Опа на 392 милливольт, а было 554 …

А давайте охладим наш диод. Для этого используем морозильную камеру холодильника:

615 милливольт…

При повышении температуры, прямое падение напряжения на PN-переходе понижается, а при понижении температуры – повышается.  Из Закона Ома вы знаете, что чем меньше сопротивление (а следовательно и падение напряжение на нем), тем лучше течет электрический ток. Может быть, именно поэтому вся современная электроника очень плохо работает на холоде, но прекрасно работает в жаре, потому как почти полностью построена на полупроводниках.

Зависимость сопротивления прямого перехода от температуры, радиолюбители используют даже в своих схемах, например в схеме Умного вентилято ра.

продолжение ——->

<——– предыдущая статья  

Маркировка полипропиленовых труб

Трубы из полипропилена выпускают с различными техническими характеристиками, которые отображаются в специальной маркировке.

Для того чтобы избежать ошибок при выборе необходимых труб для горячего или же холодного водоснабжения, а также и для отопления, нужно иметь представление о той маркировке, которая на трубу нанесена и является как бы ее паспортом.

Номинальное давление

  1. Буквы PN обозначают номинальное давление. Оно выражается в барах (кг/см2). PN – это неизменное номинальное внутреннее давление воды с температурой 20 градусов Цельсия, выдерживаемое трубами безотказно в течение 50 лет.
  2. Больше всего распространены полипропиленовые трубы PN 25, PN 20, PN 16 и PN 10. Тут нужно учесть то, что чем толще у трубы стенка, то тем выше будет обозначение PN. Маркировка полипропиленовых труб для отопления обозначена PN 20 и PN 25. Также они подходят и для обустройства горячего водоснабжения.
  3. Некоторые производители изготовляют трубы, на которых идет синяя продольная полоса для холодной воды (PN 10). Красная полоса на трубах говорит о том, что они предназначаются для воды горячей (PN 20). Есть таблицы, по которым рассчитывается срок службы трубы, руководствуясь данными по температуре воды и ее давлению. Чем будет выше давление и если температура воды выше 20 градусов, тем меньше прослужит труба.

Обозначение материала

  1. Разные изготовители труб используют различные обозначения. Но буквы РР всегда свидетельствуют о том, что трубы сделаны из полипропилена. Если вы увидели обозначения РРН, РР-тип 1 или же РР-1, то это изделие изготовлено из первого типа полипропилена – гомополимера. Обозначения РР-тип 2, РР-2, или РРВ – трубы сделаны из блоксополимера. Однако лучшим признан рандом сополимер: РР-3, PPR, PP-random, PPRC.
  2. Маркировка полипропиленовых труб для водоснабжения холодной воды будет обозначена РРН. Такие трубы применяются и при прокладке вентиляции. Трубы, маркированные РРВ, находят свое применение в центральном и автономном отоплении и холодном водоснабжении.
  3. Трубная продукция с маркировкой PPR распространена больше всего благодаря своей повышенной теплостойкости. Поэтому они подходят и для горячей воды, и для холодной, а также для отопительных систем разнообразного вида.

Маркировка полипропиленовых труб

Что еще обозначено в маркировке

  1. Диаметр трубы и минимальный размер ее стенок. Специально принятая схема для этого обозначения похожа на нашу метрическую систему мер. Диаметры трубы обозначены в миллиметрах цифрами – от 10 и до 1200 мм.
  2. Дата выпуска, номер партии и другое. Сведения в 15 цифрах обозначены двумя последними цифрами года, когда трубы были изготовлены, месяц и номер декады года, номер смены, номер партии, машины и производственной линии.
  3. Товарная марка изготовителя продукции, информация о сертификате. Также имеется информация о присвоении знака качества производителю труб, который подтверждает способность выпускать изделия по национальному стандарту, обозначение материала, который применяется в производстве.

Видео: Предназначения полипропиленовых труб


Информация на трубах. Показатель SDR труб из полипропилена. Что это такое?

Приобретая полипропиленовые трубы  в компании «СантехникУМ», для устройства коммуникационных систем в домашних либо производственных целях, вы можете увидеть нанесенную на них маркировку с набором различных данных о конкретном изделии. Она содержит:

  • информацию об изготовителе трубы,
  • номера стандартов ГОСТ, в соответствии с которыми она изготавливалась,
  • сокращение «PPR», означающее, что трубы сделаны из полипропилена – термопластичного полимера углеводорода «полипропилен».
  • диаметр изделия и толщину материала его стенок,
  • а также аббревиатуру SDR с определенным индексом.

В этом случае SDR полипропиленовых труб является прочностной величиной, по которой можно наиболее точно определить возможности трубных изделий.

Из чего складывается SDR

SDR (с англ. Standart Dimension Ratio – стандартный размерный коэффициент) – это размерная характеристика полимерной трубы, которая является результатом отношения внешнего диаметра к толщине полипропиленовой стенки. Эта величина обратно пропорциональна толщине стенок трубы, то есть изделия с большим индексом SDR имеют более тонкие стенки, и наоборот – толстостенная труба обозначается меньшим SDR.

Трубы одинакового диаметра с более толстыми стенками могут выдерживать гораздо большие нагрузки, которые вызываются в процессе эксплуатации следующими техническими и природными факторами:

  • внутренним давлением содержимого,
  • внешними сжатиями, например при засыпании трубы землей,
  • внешними механическими воздействиями, такими как сезонные сдвиги грунта и т.п.

То есть показатель SDR одновременно с толщиной полипропиленового слоя указывает на возможную для данной трубы нагрузку, или давление (внутреннее и внешнее).

Чем отличаются трубы с разным индексом SDR

Общие отличия

На данный момент выпускаются полипропиленовые трубы с SDR от 6-ти до 41, для которых возможны нагрузки, представленные в следующей таблице по «классам давления»:

SDR 6 SDR 7,4 SDR 9 SDR 11 SDR 13,6 SDR 17 SDR 17,6 SDR 21 SDR 26 SDR 33 SDR 41
25 атм 20 атм 16 атм 12 атм 10 атм 8 атм 7 атм 6 атм 5 атм 4 атм 4 атм

Таким образом, стандартный размерный коэффициент может использоваться при определении назначения трубы для конкретных систем – напорных и безнапорных, а именно:

  • Трубы с индексом SDR 26-41 применяются для безнапорных (самотечных) канализационных отводов;
  • С показателями 21-26 уже могут использоваться для внутридомового слабонапорного водообеспечения малоэтажек;
  • Изделия, индексированные показателем от 11-ти до 17-ти, могут послужить для постройки слабонапорных водопроводных и оросительных систем;
  • Трубы с SDR выше менее 9-ти подойдут для напорных систем, предназначенных к подаче воды, устройству напорных канализационных коллекторов и даже газопроводов.

Примеры

Полипропиленовые трубы одной марки с разным SDR могут иметь существенные отличия. Так, для наиболее популярной марки полипропилена SDR 11 (PN 10) VALFEX

это:

  1. Труба полипропиленовая SDR 11 (PN 10) VALFEX– Труба из полипропилена PPR-C SDR 11 (PN 10) соответствует ГОСТу 32415-2013, подходит для систем питьевого и хозяйственно-питьевого холодного водоснабжения, горячего водоснабжения, а также технологических трубопроводов, транспортирующих жидкости и газы, неагрессивные к материалам трубы. Трубы обладают хорошими теплоизоляционными свойствами, химической стойкостью более чем к 300 веществам и растворам, а также шумопоглащающим свойством. Максимальная температура эксплуатации: +60 °С. Технология монтажа трубопроводов – полифузионная сварка.;
  2. Труба полипропиленовая SDR 6 (PN 20) VALFEX -Труба из полипропилена PPR-C SDR 6 (PN 20) соответствует ГОСТу 32415-2013, подходит для систем питьевого и хозяйственно-питьевого холодного водоснабжения, горячего водоснабжения, а также технологических трубопроводов, транспортирующих жидкости и газы, неагрессивные к материалам трубы. Трубы обладают хорошими теплоизоляционными свойствами, химической стойкостью более чем к 300 веществам и растворам, а также шумопоглащающим свойством. Максимальная температура эксплуатации: +95 °С, кратковременно до +100 °С. Технология монтажа трубопроводов – полифузионная сварка;

  3. Труба полипропиленовая армированная стекловолокном SDR 7.4 (PN 20) VALFEX -Полипропиленовая труба PP-R, армированная стекловолокном, SDR 7.4 (PN 20), соответствует ГОСТ 32415-2013 и служит для систем радиаторного отопления, систем питьевого горячего и холодного водоснабжения, кондиционирования, промышленных трубопроводных сетей. Труба обладает увеличенным сроком службы в системах отопления и охлаждения, т.к. слой стекловолокна обеспечивает прочность труб при меньшей толщине стенки, при этом на 20% увеличена проводимость носителя. Технология монтажа трубопроводов – полифузионная сварка. Максимальная рабочая температура: +95°С.

  4. Труба полипропиленовая армированная стекловолокном SDR 6 (PN 25) VALFEX — Полипропиленовая труба PP-R, армированная стекловолокном, SDR 6 (PN 25), соответствует ГОСТ 32415-2013 и служит для систем радиаторного отопления, систем питьевого горячего и холодного водоснабжения, кондиционирования, промышленных трубопроводных сетей. Труба обладает увеличенным сроком службы в системах отопления и охлаждения, т.к. слой стекловолокна обеспечивает прочность труб при меньшей толщине стенки, при этом на 20% увеличена проводимость носителя. Технология монтажа трубопроводов – полифузионная сварка. Максимальная рабочая температура: +95°С.

  5. Труба полипропиленовая армированная алюминием SDR 6 (PN 25) VALFEX — Труба полипропиленовая армированная алюминием PP-R PN 25 SDR 6 (PN 25) соответствует ГОСТу 32415-2013. Применяется в холодном, горячем водоснабжении, низко-, высокотемпературном отоплении, при прокладке пневмопроводов, технологических трубопроводов, в объединенных системах противопожарного водоснабжения. Внутренний алюминиевый слой обладает абсолютной кислородонепроницаемостью, снижает температурное удлинение трубопровода, а также увеличивает прочность трубы, за счет наличия сплошного продольного сварного шва. Особая конструкция труб не требует проведения зачистки перед выполнением сварочных работ. Номинальное давление (транспортировка холодной воды) – 25 бар. Максимальная рабочая температура — 90 °С. Диапазон наружных диаметров предлагаемых полипропиленовых труб – 20–110 мм.

ВАЖНО! При выборе трубы по SDR обязательно учитывайте марку полипропилена, из которого она изготовлена. Даже для одинаковых размерных коэффициентов труба более высокой марки будет прочнее и устойчивее к механическим воздействиям. Например, SDR 6 (PN 25) VALFEX, в отличие от SDR 6 (PN 20) VALFEX с тем же индексом, может применяться для напорных водо-и газопроводов.

Класс давления (прочности) по ANSI 25, 125,150,250,300,600,900,2500. Сколько это в атмосферах (барах)?


ПОЛЕЗНЫЕ ССЫЛКИ:

БОНУСЫ ИНЖЕНЕРАМ!:

МЫ В СОЦ.СЕТЯХ:

Навигация по справочнику TehTab.ru:  главная страница  / / Техническая информация / / Инженерные приемы и понятия / / Классы давления, температуры, герметичности  / / Класс давления (прочности) по ANSI 25, 125,150,250,300,600,900,2500. Сколько это в атмосферах (барах)?

Класс давления (прочности) по ANSI 25, 125,150,250,300,600,900,2500. Сколько Ру (PN) это в атмосферах (барах)?

!!! Сверловка, строительные длины (и другие присоединительные размеры) ANSI совершенно не совпадвют с обычными ГОСТ (DIN, EN)!!!, хотя и в ГОСТе и в других стандартах есть специальные исполнения, соответствующие ANSI

1.Таблица для обломщиков и лентяев (для обычных инженеров) составлена согласно ASME В16.5; более подробные таблицы для зануд и отличников — ниже:

ANSI Class 150 300 400 600 900 1500 2500
Ру, PN (бар) 20 50 68 100 150 250 420

2.Таблица составлена согласно ASME В16.5(-96)

Диапазон температур

20oС до 38oС

38oС до 100oС

Без диапазона температур

Класс ANSI

Рабочее давление — Ру, PN

Рабочее давление — Ру, PN

Испытательное  давление

150

psig (psi приборного) 290
2 МПа (20 бар)

psig 260
2 МПа (20 бар)

psig 450
3 МПа (30 бар)

300

psig 750
5 МПа (50 бар)

psig 750
5 МПа (50 бар)

psig 1125
7 МПа (70 бар)

600

psig 1500
10 МПа (100 бар)

psig 1500
10 МПа (100 бар)

psig 2225
15 МПа (150 бар)

3.Таблица соответствия классов давления ANSI и PN по DIN из ANSI стандарта строительных длин.

Класс ANSI/Материал корпуса

PN

25 Серый чугун

. . .

125 Серый чугун

20

150 Ковкий чугун

20

150 Сталь

20

250 Серый чугун

50

300 Ковкий чугун

50

300 Сталь

50

600 Сталь

110

900 Сталь

150

1500 Сталь

260

2500 Сталь

420

4. Таблица пересчета темпертуры °C в рабочее давление в бар для различных классов давления ANSI (на примере хладостойких сталей, но картину в целом передает отлично) .

Хладостойкие стали:
ASME SA-205(NGS277)
ASTM A-216 Grade WCB (NGS277)
ASME SA-205 Grade LF2(NGS277)

Class 150
(PN20)

Class 300
(PN50)

Class 600
(PN100)

Class 900
(PN150)

Class 1500
(PN250)

Class 250
(PN420)

-29 до +38

19,6 51,1 102,2 153,2 255,3 425,5

50

19,2 50,1 100,2 150,2 250,4 417,3

100

17,7 46,4 92,8 139,1 231,9 386,5

150

15,8 45,2 90,5 135,7 226,1 376,9

200

14,0 43,8 87,6 131,5 219,1 365,2

250

12,1 41,7 83,4 125,2 208,6 347,7

300

10,2 38,7 77,5 116,2 193,7 322,8

350

8,4 37,0 73,9 110,9 184,8 308,0

375

7,4 36,5 72,9 109,4 182,3 303,9

400

6,5 34,5 69,0 103,5 172,5 287,5

425

5,6 28,8 57,5 86,3 143,8 239,6

450

4,7 20,0 40,1 60,1 100,2 166,9

475

3,7 13,5 27,1 40,6 67,7 112,9

500

2,8 8,8 17,6 26,4 44,0 73,3

525

1,9 5,2 10,4 15,5 25,9 43,2

540

1,3 3,3 6,5 9,8 16,3 27,2

Смотрите тут — настольная для инженеров Таблица перевода единиц давления . Удачи, коллеги.

↓Поиск на сайте TehTab.ru — Введите свой запрос в форму

PPRC трубы, расшифровка и маркировка |

Рассмотрим PPRC трубы, расшифровка числовых и буквенных значений этих изделий интересует многих.

Начнем с того, что сегодня такую аббревиатуру можно увидеть очень редко. Чаще всего встречается сочетание буквенных символов PPR, что порой вводит потребителя в заблуждение.

Между тем и PPRC и PPR — это изделия, изготовленные из одного и того же материала.

Просто спустя некоторое время после выхода продукции на рынок почти все производители отказались от последней буквы.

Первые два символа (PP) расшифровывается предельно просто, и означают то, что материал трубы — это полипропилен. Буквенные значения данного вида изделий звучат в оригинале как PolyPropyleneRandomCopolymer. Что означает блок-сополимер ПП с нормальным содержанием ПЭ.

К сожалению, прочитать и понять маркировочную надпись на полипропиленовых трубах сегодня не всегда и не всем удается. Связано это с тем, что устоявшейся методики по маркировки труб в настоящее время нет, а посему каждый производитель волен поступать, как хочет и иногда ставит свое обозначение.

Тип трубы PPR (не забываем, что это одновременно и вариант PPRC) является самым популярным и самым востребованным среди покупателей на данный момент. Однако заметим, что не самым идеальным, поскольку в производстве этого типа изделий участвует рандом-сополимер. Т.е. область применение подобных продуктов значительно сужается, они идут только на монтаж систем отопления, водопроводных коммуникаций и иногда на обустройство тёплых полов.

Тем не менее, какое-то подобие международного стандарта всё же производителями соблюдается. Нам важно запомнить, что литера R означает роддом-сополимер.

Как расшифровать параметры трубы PPRC (PPR)?

Обычно на товаре можно увидеть приблизительно такую маркировку:

Название фирмы/PPR(1-буквенный индекс)/PN(2-числовой индекс)/(3-числовой индекс)/класс/(4-числовой индекс)МПа/ТУ(5-числовой индекс).

Здесь в расшифровке:

  • 1 — обозначение трубы;
  • 2 — номинальное давление;
  • 3 — диаметр (внешний) и толщина стенки;
  • 4 — максимальное рабочее давление;
  • 5 — нормативный документ (ТУ………), иногда – дата выпуска, номер партии.

Например:

BLUE OCEAN PPR-HWCW/S3.2/25*3,5 PN1.6МПа и т.д.

Но что потребителю на практике дает расшифровка PPRC труб? Она позволяет подобрать нужную геометрию (диаметр и длину) под расчетное давление в системе. Нужно только помнить при расшифровке, что значения давления (PN10, PN20 и т.д.) указаны при температуре в +20°C.

Вообще же следует сказать о том, что полипропиленовые трубы PPRC плохо работают в условиях слишком низких или высоких температур.

PPRC трубы, расшифровка, аналитика-1

Так же при расшифровке нужно знать следующее.

  1. Изделие PPRC 20 мм обычно идет на внутриквартирную разводку холодной или горячей системы водоснабжения.
  2. 25 мм — на разводку таких систем в коттеджах и частных домах.
  3. 32-40 мм — на монтаж стояков.
  4. Кроме того, при расшифровке трубы PPRC могут встретиться и другие обозначения. Например, PPR-AL-PPR. Это означает, что продукт армирован алюминиевой фольгой. Встречается также армирование труб PPRC стекловолокном.
Egor11

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *