N обозначение – «Что означает аббревиатура «N.E.E.T»? Откуда она появилась и когда употребляется?» – Яндекс.Знатоки

Содержание

что такое n в физике? :: SYL.ru

Изучение физики в школе длится несколько лет. При этом ученики сталкиваются с проблемой, что одни и те же буквы обозначают совершенно разные величины. Чаще всего этот факт касается латинских букв. Как же тогда решать задачи?

Пугаться такого повтора не стоит. Ученые постарались ввести их в обозначение так, чтобы одинаковые буквы не встретились в одной формуле. Чаще всего ученики сталкиваются с латинской n. Она может быть строчной или прописной. Поэтому логично возникает вопрос о том, что такое n в физике, то есть в определенной встретившейся ученику формуле.

что такое n в физике

Что обозначает прописная буква N в физике?

Чаще всего в школьном курсе она встречается при изучении механики. Ведь там она может быть сразу в дух значениях – мощность и сила нормальной реакции опоры. Естественно, что эти понятия не пересекаются, ведь используются в разных разделах механики и измеряются в разных единицах. Поэтому всегда нужно точно определить, что такое n в физике.

Мощность — это скорость изменения энергии системы. Это скалярная величина, то есть просто число. Единицей ее измерения служит ватт (Вт).

Сила нормальной реакции опоры — сила, которая оказывает действие на тело со стороны опоры или подвеса. Кроме числового значения, она имеет направление, то есть это векторная величина. Причем она всегда перпендикулярна поверхности, на которую производится внешнее воздействие. Единицей измерения этой N является ньютон (Н).

Что такое N в физике, помимо уже указанных величин? Это может быть:

  • постоянная Авогадро;

  • увеличение оптического прибора;

  • концентрация вещества;

  • число Дебая;

  • полная мощность излучения.

как найти n в физике

Что может обозначать строчная буква n в физике?

Список наименований, которые могут за ней скрываться, достаточно обширен. Обозначение n в физике используется для таких понятий:

  • показатель преломления, причем он может быть абсолютным или относительным;

  • нейтрон — нейтральная элементарная частица с массой незначительно большей, чем у протона;

  • частота вращения (используется для замены греческой буквы «ню», так как она очень похожа на латинскую «вэ») — число повторения оборотов за единицу времени, измеряется в герцах (Гц).

Что означает n в физике, кроме уже указанных величин? Оказывается, за ней скрываются основное квантовое число (квантовая физика), концентрация и постоянная Лошмидта (молекулярная физика). Кстати, при вычислении концентрации вещества требуется знать величину, которая также записывается латинской «эн». О ней будет идти речь ниже.

формула n в физике

Какая физическая величина может быть обозначена n и N?

Ее название происходит от латинского слова numerus, в переводе оно звучит как «число», «количество». Поэтому ответ на вопрос о том, что значит n в физике, достаточно прост. Это количество любых предметов, тел, частиц — всего, о чем идет речь в определенной задаче.

Причем «количество» — одна из немногих физических величин, которые не имеют единицы измерения. Это просто число, без наименования. Например, если в задаче идет речь о 10 частицах, то n будет равно просто 10. Но если получается так, что строчная «эн» уже занята, то использовать приходится прописную букву.

что означает n в физике

Формулы, в которых фигурирует прописная N

Первая из них определяет мощность, которая равна отношению работы ко времени:

N = А : t.

В молекулярной физике имеется такое понятие, как химическое количество вещества. Обозначается греческой буквой «ню». Чтобы его сосчитать, следует разделить количество частиц на число Авогадро:

ν = N : NА.

Кстати, последняя величина тоже обозначается столь популярной буквой N. Только у нее всегда присутствует нижний индекс — А.

Чтобы определить электрический заряд, потребуется формула:

q = N × e.

Еще одна формула с N в физике частота колебаний. Чтобы ее сосчитать, нужно их число разделить на время:

ν = N : t.

Появляется буква «эн» в формуле для периода обращения:

Т = t : N.

что значит n в физике

Формулы, в которых встречается строчная n

В школьном курсе физики эта буква чаще всего ассоциируется с показателем преломления вещества. Поэтому важным оказывается знание формул с ее применением.

Так, для абсолютного показателя преломления формула записывается следующим образом:

n = с : v.

Здесь с — скорость света в вакууме, v — его скорость в преломляющей среде.

Формула для относительного показателя преломления несколько сложнее:

n21 = v1 : v2 = n2 : n1,

где n1 и n2 — абсолютные показатели преломления первой и второй среды, v1 и v2 — скорости световой волны в указанных веществах.

Как найти n в физике? В этом нам поможет формула, в которой требуется знать углы падения и преломления луча, то есть n21= sin α : sin γ.

чему равно n в физике

Чему равно n в физике, если это показатель преломления?

Обычно в таблицах приводятся значения для абсолютных показателей преломления различных веществ. Не стоит забывать, что эта величина зависит не только от свойств среды, но и от длины волны. Табличные значения показателя преломления даются для оптического диапазона.

СредаАбсолютный показатель преломления
воздух1,00029
лед1,31
вода1,33298
спирт этиловый1,36
сахар1,56
алмаз2,419

Итак, стало ясно, что такое n в физике. Чтобы не осталось каких-либо вопросов, стоит рассмотреть некоторые примеры.

Задача на мощность

№1. Во время пахоты трактор тянет плуг равномерно. При этом он прилагает силу 10 кН. При таком движении в течение 10 минут он преодолевает 1,2 км. Требуется определить развиваемую им мощность.

Перевод единиц в СИ. Начать можно с силы, 10 Н равны 10000 Н. Потом расстояние: 1,2 × 1000 = 1200 м. Осталось время — 10 × 60 = 600 с.

Выбор формул. Как уже было сказано выше, N = А : t. Но в задаче нет значения для работы. Для ее вычисления пригодится еще одна формула: А = F × S. Окончательный вид формулы для мощности выглядит так: N = (F × S) : t.

Решение. Вычислим сначала работу, а потом – мощность. Тогда в первом действии получится 10 000 × 1 200 = 12 000 000 Дж. Второе действие дает 12 000 000 : 600 = 20 000 Вт.

Ответ. Мощность трактора равна 20 000 Вт.

n физика обозначение

Задачи на показатель преломления

№2. Абсолютный показатель преломления у стекла равен 1,5. Скорость распространения света в стекле меньше, чем в вакууме. Требуется определить, во сколько раз.

В СИ переводить данные не требуется.

При выборе формул остановиться нужно на этой: n = с : v.

Решение. Из указанной формулы видно, что v = с : n. Это значит, что скорость распространения света в стекле равна скорости света в вакууме, деленному на показатель преломления. То есть она уменьшается в полтора раза.

Ответ. Скорость распространения света в стекле меньше, чем в вакууме, в 1,5 раза.

№3. Имеются две прозрачные среды. Скорость света в первой из них равна 225 000 км/с, во второй — на 25 000 км/с меньше. Луч света идет из первой среды во вторую. Угол падения α равен 30º. Вычислить значение угла преломления.

Нужно ли переводить в СИ? Скорости даны во внесистемных единицах. Однако при подстановке в формулы они сократятся. Поэтому переводить скорости в м/с не нужно.

Выбор формул, необходимых для решения задачи. Потребуется использовать закон преломления света: n

21= sin α: sin γ. А также: n = с : v.

Решение. В первой формуле n21 — это отношение двух показателей преломления рассматриваемых веществ, то есть n2 и n1. Если записать вторую указанную формулу для предложенных сред, то получатся такие: n1= с : v1 и n2 =с : v2. Если составить отношение двух последних выражений, получится, что n21 = v1 : v2. Подставив его в формулу закона преломления, можно вывести такое выражение для синуса угла преломления: sin γ = sin α × (v2 : v1).

Подставляем в формулу значения указанных скоростей и синуса 30º (равен 0,5), получается, что синус угла преломления равен 0,44. По таблице Брадиса получается, что угол γ равен 26º.

Ответ. Значение угла преломления — 26º.

Задачи на период обращения

№4. Лопасти ветряной мельницы вращаются с периодом, равным 5 секундам. Вычислите число оборотов этих лопастей за 1 час.

Переводить в единицы СИ нужно только время 1 час. Оно будет равно 3 600 секундам.

Подбор формул. Период вращения и число оборотов связаны формулой Т = t : N.

Решение. Из указанной формулы число оборотов определяется отношением времени к периоду. Таким образом, N = 3600 : 5 = 720.

Ответ. Число оборотов лопастей мельницы равно 720.

№5. Винт самолета вращается с частотой 25 Гц. Какое время потребуется винту, чтобы совершить 3 000 оборотов?

Все данные приведены с СИ, поэтому переводить ничего не нужно.

Необходимая формула: частота ν = N : t. Из нее необходимо только вывести формулу для неизвестного времени. Оно является делителем, поэтому его полагается находить делением N на ν.

Решение. В результате деления 3 000 на 25 получается число 120. Оно будет измеряться в секундах.

Ответ. Винт самолета совершает 3000 оборотов за 120 с.

Подведем итоги

Когда ученику в задаче по физике встречается формула, содержащая n или N, ему нужно разобраться с двумя моментами. Первый — из какого раздела физики приведено равенство. Это может быть ясно из заголовка в учебнике, справочнике или слов учителя. Потом следует определиться с тем, что скрывается за многоликой «эн». Причем в этом помогает наименование единиц измерения, если, конечно, приведено ее значение. Также допускается еще один вариант: внимательно посмотрите на остальные буквы в формуле. Возможно, они окажутся знакомыми и дадут подсказку в решаемом вопросе.

Таблица математических символов — Википедия

Символ (TeX)
(Команда (TeX))
Символ (Юникод) Название Значение Пример
Произношение
Раздел математики
⇒{\displaystyle \Rightarrow }
(\Rightarrow)
→{\displaystyle \rightarrow }
(\rightarrow)
⊃{\displaystyle \supset }
(\supset)

Импликация, следование A⇒B{\displaystyle A\Rightarrow B} означает «если A{\displaystyle A} верно, то B{\displaystyle B} также верно».
(→ может использоваться вместо или для обозначения функции, см. ниже.)
(⊃ может использоваться вместоили для обозначения надмножества, см. ниже.).
x=2⇒x2=4{\displaystyle x=2\Rightarrow x^{2}=4} верно, но x2=4⇒x=2{\displaystyle x^{2}=4\Rightarrow x=2} неверно (так как x=−2{\displaystyle x=-2} также является решением).
«влечёт» или «если…, то» или

«отсюда следует»

везде
⇔{\displaystyle \Leftrightarrow }
(\Leftrightarrow)
Равносильность A⇔B{\displaystyle A\Leftrightarrow B} означает «A{\displaystyle A} верно тогда и только тогда, когда B{\displaystyle B} верно». x+5=y+2⇔x+3=y{\displaystyle x+5=y+2\Leftrightarrow x+3=y}
«если и только если» или «равносильно»
везде
∧{\displaystyle \wedge }
(\wedge)
Конъюнкция A∧B{\displaystyle A\wedge B} истинно тогда и только тогда, когда A{\displaystyle A} и B{\displaystyle B} оба истинны. (n>2)∧(n<4)⇔(n=3){\displaystyle (n>2)\wedge (n<4)\Leftrightarrow (n=3)}, если n{\displaystyle n} — натуральное число.
«и»
Математическая логика
∨{\displaystyle \vee }
(\vee)
Дизъюнкция A∨B{\displaystyle A\vee B} истинно, когда хотя бы одно из условий A{\displaystyle A} и B{\displaystyle B} истинно. (n⩽2)∨(n⩾4)⇔n≠3{\displaystyle (n\leqslant 2)\vee (n\geqslant 4)\Leftrightarrow n\neq 3}, если n{\displaystyle n} — натуральное число.
«или»
Математическая логика
¬{\displaystyle \neg }
(\neg)
¬ Отрицание ¬A{\displaystyle \neg A} истинно тогда и только тогда, когда ложно A{\displaystyle A}. ¬(A∧B)⇔(¬A)∨(¬B){\displaystyle \neg (A\wedge B)\Leftrightarrow (\neg A)\vee (\neg B)}
x∉S⇔¬(x∈S){\displaystyle x\notin S\Leftrightarrow \neg (x\in S)}
«не»
Математическая логика
∀{\displaystyle \forall }
(\forall)
Квантор всеобщности ∀x,P(x){\displaystyle \forall x,P\left(x\right)} обозначает «P(x){\displaystyle P\left(x\right)} верно для всех x{\displaystyle x}». ∀n∈N,n2⩾n{\displaystyle \forall n\in \mathbb {N} ,\;n^{2}\geqslant n}
«Для любых», «Для всех», «Для всякого»
Математическая логика
∃{\displaystyle \exists }
(\exists)
Квантор существования ∃x,P(x){\displaystyle \exists x,\;P\left(x\right)} означает «существует хотя бы один x{\displaystyle x} такой, что верно P(x){\displaystyle P\left(x\right)}» ∃n∈N,n+5=2n{\displaystyle \exists n\in \mathbb {N} ,\;n+5=2n} (подходит число 5)
«существует»
Математическая логика
={\displaystyle =} = Равенство x=y{\displaystyle x=y} обозначает «x{\displaystyle x} и y{\displaystyle y} обозначают одно и то же значение». 1 + 2 = 6 − 3
«равно»
везде
:={\displaystyle :=}

:⇔{\displaystyle :\Leftrightarrow }
(:\Leftrightarrow)
=def{\displaystyle {\stackrel {\rm {def}}{=}}}
(\stackrel{\rm{def}}{=})

:=

:⇔

 

Определение x:=y{\displaystyle x:=y} означает «x{\displaystyle x} по определению равен y{\displaystyle y}».
P:⇔Q{\displaystyle P:\Leftrightarrow Q} означает «P{\displaystyle P} по определению равносильно Q{\displaystyle Q}»
ch(x):=12(ex+e−x){\displaystyle {\rm {ch}}\left(x\right):={1 \over 2}\left(e^{x}+e^{-x}\right)} (определение гиперболического косинуса)
A⊕B:⇔(A∨B)∧¬(A∧B){\displaystyle A\oplus B:\Leftrightarrow (A\vee B)\wedge \neg (A\wedge B)} (определение исключающего «ИЛИ»)
«равно/равносильно по определению»
везде
{,}{\displaystyle \{,\}} { } Множество элементов {a,b,c}{\displaystyle \{a,\;b,\;c\}} означает множество, элементами которого являются a{\displaystyle a}, b{\displaystyle b} и c{\displaystyle c}. N={1,2,…}{\displaystyle \mathbb {N} =\{1,\;2,\;\ldots \}} (множество натуральных чисел)
«Множество…»
Теория множеств
{|}{\displaystyle \{|\}} {|} Множество элементов, удовлетворяющих условию {x|P(x)}{\displaystyle \{x\,|\,P\left(x\right)\}} означает множество всех x{\displaystyle x} таких, что верно P(x){\displaystyle P\left(x\right)}. {n∈N|n2<20}={1,2,3,4}{\displaystyle \{n\in \mathbb {N} \,|\,n^{2}<20\}=\{1,\;2,\;3,\;4\}}
«Множество всех… таких, что верно…»
Теория множеств
∅{\displaystyle \varnothing }
(\varnothing)
{}{\displaystyle \{\}}
 

{}

Пустое множество {}{\displaystyle \{\}} и ∅{\displaystyle \varnothing } означают множество, не содержащее ни одного элемента. {n∈N|1<n2<4}=∅{\displaystyle \{n\in \mathbb {N} \,|\,1<n^{2}<4\}=\varnothing }
«Пустое множество»
Теория множеств
∈{\displaystyle \in }
(\in)
∉{\displaystyle \notin }
(\notin)

Принадлежность/непринадлежность к множеству a∈S{\displaystyle a\in S} означает «a{\displaystyle a} является элементом множества S{\displaystyle S}»
a∉S{\displaystyle a\notin S} означает «a{\displaystyle a} не является элементом множества S{\displaystyle S}»
2∈N{\displaystyle 2\in \mathbb {N} }
12∉N{\displaystyle {1 \over 2}\notin \mathbb {N} }
«принадлежит», «из»
«не принадлежит»
Теория множеств
⊆{\displaystyle \subseteq }
(\subseteq)
⊂{\displaystyle \subset }
(\subset)

Подмножество A⊆B{\displaystyle A\subseteq B} означает «каждый элемент из A{\displaystyle A} также является элементом из B{\displaystyle B}».
A⊂B{\displaystyle A\subset B} обычно означает то же, что и A⊆B{\displaystyle A\subseteq B}. Однако некоторые авторы используют ⊂{\displaystyle \subset }, чтобы показать строгое включение (то есть ⊊{\displaystyle \subsetneq }).
(A∩B)⊆A{\displaystyle (A\cap B)\subseteq A}
Q⊆R{\displaystyle \mathbb {Q} \subseteq \mathbb {R} }
«является подмножеством», «включено в»
Теория множеств
⊇{\displaystyle \supseteq }
(\supseteq)
⊃{\displaystyle \supset }
(\supset)

Надмножество A⊇B{\displaystyle A\supseteq B} означает «каждый элемент из B{\displaystyle B} также является элементом из A{\displaystyle A}».
A⊃B{\displaystyle A\supset B} обычно означает то же, что и A⊇B{\displaystyle A\supseteq B}. Однако некоторые авторы используют ⊃{\displaystyle \supset }, чтобы показать строгое включение (то есть ⊋{\displaystyle \supsetneq }).
(A∪B)⊇A{\displaystyle (A\cup B)\supseteq A}
R⊇Q{\displaystyle \mathbb {R} \supseteq \mathbb {Q} }
«является надмножеством», «включает в себя»
Теория множеств
⊊{\displaystyle \subsetneq }
(\subsetneq)
Собственное подмножество A⊊B{\displaystyle A\subsetneq B} означает A⊆B{\displaystyle A\subseteq B} и A≠B{\displaystyle A\neq B}. N⊊Q{\displaystyle \mathbb {N} \subsetneq \mathbb {Q} }
«является собственным подмножеством», «строго включается в»
Теория множеств
⊋{\displaystyle \supsetneq }
(\supsetneq)
Собственное надмножество A⊋B{\displaystyle A\supsetneq B} означает A⊇B{\displaystyle A\supseteq B} и A≠B{\displaystyle A\neq B}. Q⊋N{\displaystyle \mathbb {Q} \supsetneq \mathbb {N} }
«является собственным надмножеством», «строго включает в себя»
Теория множеств
∪{\displaystyle \cup }
(\cup)
Объединение A∪B{\displaystyle A\cup B} означает множество, содержащее все элементы из A{\displaystyle A} и B{\displaystyle B} A⊆B⇔A∪B=B{\displaystyle A\subseteq B\Leftrightarrow A\cup B=B}
«Объединение … и …», «…, объединённое с …»
Теория множеств
∩{\displaystyle \cap }
(\cap)
Пересечение A∩B{\displaystyle A\cap B} означает множество одинаковых элементов, принадлежащих и A{\displaystyle A}, и B{\displaystyle B}. {x∈R|x2=1}∩N={1}{\displaystyle \{x\in \mathbb {R} \,|\,x^{2}=1\}\cap \mathbb {N} =\{1\}}
«Пересечение … и … «, «…, пересечённое с …»
Теория множеств
∖{\displaystyle \setminus }
(\setminus)
\ Разность множеств A∖B{\displaystyle A\setminus B} означает множество элементов, принадлежащих A{\displaystyle A}, но не принадлежащих B{\displaystyle B}. {1,2,3,4}∖{3,4,5,6}={1,2}{\displaystyle \{1,\;2,\;3,\;4\}\setminus \{3,\;4,\;5,\;6\}=\{1,\;2\}}
«разность … и …», «минус», «… без …»
Теория множеств
→{\displaystyle \to }
(\to)
Функция (отображение) f:X→Y{\displaystyle f\colon X\to Y} означает функцию f{\displaystyle f} с областью определения X{\displaystyle X} и областью значений Y{\displaystyle Y}. Функция f:Z→N∪{0}{\displaystyle f\colon \mathbb {Z} \to \mathbb {N} \cup \{0\}}, определённая как f(x)=x2{\displaystyle f\left(x\right)=x^{2}}
«из … в …»,
везде
↦{\displaystyle \mapsto }
(\mapsto)
Отображение f:x↦f(x){\displaystyle f\colon x\mapsto f\left(x\right)} означает, что образом x{\displaystyle x} после применения функции f{\displaystyle f} будет f(x){\displaystyle f\left(x\right)}. Функцию, определённую как

Список обозначений в физике — Википедия

Символ Значение и происхождение
A{\displaystyle A} Площадь (лат. area), векторный потенциал[1], работа (нем. Arbeit), амплитуда (лат. amplitudo), параметр вырождения, Работа выхода (нем. Austrittsarbeit), коэффициент Эйнштейна для спонтанного излучения, массовое число
a{\displaystyle a} Ускорение (лат. acceleratio), амплитуда (лат. amplitudo), активность (лат. activitas), коэффициент температуропроводности, вращательная способность, радиус Бора, натуральный показатель поглощения света
B{\displaystyle B} Вектор магнитной индукции[1], барионный заряд (англ. baryon number), удельная газовая постоянная, вириальний коэффициент, функция Бриллюэна (англ. Brillion function), ширина интерференционной полосы (нем. Breite), яркость, постоянная Керра, коэффициент Эйнштейна для вынужденного излучения, коэффициент Эйнштейна для поглощения, вращательная постоянная молекулы
b{\displaystyle b} Вектор магнитной индукции[1], красивый кварк (англ. beauty/bottom quark), постоянная Вина, ширина распада (нем. Breite)
C{\displaystyle C} Электрическая ёмкость (англ. capacitance), теплоёмкость (англ. heatcapacity), постоянная интегрирования (лат. constans), очарование (чарм, шарм; англ. charm), коэффициенты Клебша — Гордана (англ. Clebsch-Gordan coefficients), постоянная Коттона — Мутона (англ. Cotton-Mouton constant), кривизна (лат. curvatura)
c{\displaystyle c} Скорость света (лат. celeritas), скорость звука (лат. celeritas), Теплоёмкость (англ. heat capacity), очарованный кварк (англ. charm quark), концентрация (англ. concentration), первая радиационная постоянная, вторая радиационная постоянная
D{\displaystyle D} Вектор электрической индукции[1] (англ. electric displacement field), Коэффициент диффузии (англ. diffusion coefficient), Оптическая сила (англ. dioptric power), коэффициент прохождения, тензор квадрупольного электрического момента, угловая дисперсия спектрального прибора, линейная дисперсия спектрального прибора, коэффициент прозрачности потенциального барьера, D-мезон (англ. D meson), Диаметр (лат. diametros, др.-греч. διάμετρος)
d{\displaystyle d} Расстояние (лат. distantia), Диаметр (лат. diametros, др.-греч. διάμετρος), дифференциал (лат. differentia), нижний кварк (англ. down quark), дипольный момент (англ. dipole moment), период дифракционной решётки, толщина (нем. Dicke)
E{\displaystyle E} Энергия (лат. energīa), напряжённость электрического поля[1] (англ. electric field), Электродвижущая сила (англ. electromotive force), магнитодвижущая сила, освещенность (фр. éclairement lumineux), излучательная способность тела, модуль Юнга
e{\displaystyle e} Основание натуральных логарифмов (2,71828…), электрон (англ. electron), элементарный электрический заряд (англ. elementaty electric charge), константа электромагнитного взаимодействия
F{\displaystyle F} Сила (лат. fortis), постоянная Фарадея (англ. Faraday constant), свободная энергия Гельмгольца (нем. freie Energie), атомный фактор рассеяния, тензор электромагнитного поля, магнитодвижущая сила, модуль сдвига, фокусное расстояние (англ. focal length)
f{\displaystyle f} Частота (лат. frequentia), функция (лат. functia), летучесть (нем. Flüchtigkeit), сила (лат. fortis), фокусное расстояние (англ. focal length), сила осциллятора, коэффициент трения
G{\displaystyle G} Гравитационная постоянная (англ. gravitational constant), тензор Эйнштейна, свободная энергия Гиббса (англ. Gibbs free energy), метрика пространства-времени, вириал, парциальная мольная величина, поверхностная активность адсорбата, модуль сдвига, полный импульс поля, Глюон (англ. gluon), константа Ферми, квант проводимости, электрическая проводимость, Вес (нем. Gewichtskraft)
g{\displaystyle g} Ускорение свободного падения (англ. gravitational acceleration), Глюон (англ. gluon), фактор Ланде, фактор вырождения, весовая концентрация, Гравитон (англ. graviton), метрический тензор
H{\displaystyle H} Напряжённость магнитного поля[1], эквивалентная доза, энтальпия (англ. heat contents или от греческой буквы «эта», H — ενθαλπος[2]), гамильтониан (англ. Hamiltonian), функция Ганкеля (англ. Hankel function), функция Хевисайда (англ. Heaviside step function), бозон Хиггса (англ. Higgs boson), экспозиция, полиномы Эрмита (англ. Hermite polynomials)
h{\displaystyle h} Высота (нем. Höhe), постоянная Планка (нем. Hilfsgröße[3]), спиральность (англ. helicity)
I{\displaystyle I} сила тока (фр. intensité de courant), интенсивность звука (лат. intēnsiō), интенсивность света (лат. intēnsiō), сила излучения, сила света, момент инерции, вектор намагниченности
i{\displaystyle i} Мнимая единица (лат. imaginarius), единичный вектор (координатный орт)
J{\displaystyle J} Плотность тока (также 4-вектор плотности тока), момент импульса, функция Бесселя, момент инерции, полярный момент инерции сечения, вращательное квантовое число, сила света, J/ψ-мезон
j{\displaystyle j} Мнимая единица (в электротехнике и радиоэлектронике), плотность тока (также 4-вектор плотности тока), единичный вектор (координатный орт)
K{\displaystyle K} Каона (англ. kaons), термодинамическая константа равновесия, коэффициент электронной теплопроводности металлов, модуль всестороннего сжатия, механический импульс, постоянная Джозефсона, кинетическая энергия
k{\displaystyle k} Коэффициент (нем. Koeffizient), постоянная Больцмана, теплопроводность, волновое число, единичный вектор (координатный орт)
L{\displaystyle L} Момент импульса, дальность полёта, удельная теплота парообразования и конденсации, индуктивность, функция Лагранжа (англ. Lagrangian), классическая функция Ланжевена (англ. Langevin function), число Лоренца (англ. Lorenz number), уровень звукового давления, полиномы Лагерра (англ. Laguerre polynomials), орбитальное квантовое число, энергетическая яркость, яркость (англ. luminance)
l{\displaystyle l} Длина (англ. length), длина свободного пробега (англ. length), орбитальное квантовое число, радиационная длина
M{\displaystyle M} Момент силы, масса (лат. massa, от др.-греч. μᾶζα, кусок теста), вектор намагниченности (англ. magnetization), крутящий момент, число Маха, взаимная индуктивность, магнитное квантовое число, молярная масса
m{\displaystyle m} Масса, магнитное квантовое число (англ. magnetic quantum number), магнитный момент (англ. magnetic moment), эффективная масса, дефект массы, масса Планка
N{\displaystyle N} Количество (лат. numerus), постоянная Авогадро, число Дебая, полная мощность излучения, увеличение оптического прибора, концентрация, мощность, сила нормальной реакции
n{\displaystyle n} Показатель преломления, количество вещества, нормальный вектор, единичный вектор, нейтрон (англ. neutron), количество (англ. number), основное квантовое число, частота вращения, концентрация, показатель политропы, постоянная Лошмидта
O{\displaystyle O} Начало координат (лат. origo)
P{\displaystyle P} Мощность (лат. potestas), давление (лат. pressūra), полиномы Лежандра, вес (фр. poids), сила тяжести, вероятность (лат. probabilitas), поляризуемость, вероятность перехода, импульс (также 4-импульс, обобщённый импульс; лат. petere)
p{\displaystyle p} Импульс (также 4-импульс, обобщённый импульс; лат. petere), протон (англ. proton), дипольный момент, волновой параметр, давление, число полюсов, плотность.
Q{\displaystyle Q} Электрический заряд (англ. quantity of electricity), количество теплоты (англ. quantity of heat), объёмный расход, обобщённая сила, хладопроизводительность, энергия излучения, световая энергия, добротность (англ. quality factor), нулевой инвариант Аббе, квадрупольный электрический момент (англ. quadrupole moment), энергия ядерной реакции
q{\displaystyle q} Электрический заряд, обобщённая координата, количество теплоты (англ. quantity of heat), эффективный заряд, добротность
R{\displaystyle R} Электрическое сопротивление (англ. resistance), универсальная газовая постоянная, постоянная Ридберга (англ. R ydberg constant), постоянная фон Клитцинга, коэффициент отражения, сопротивление излучения (англ. resistance), разрешение (англ. resolution), светимость, пробег частицы, расстояние
r{\displaystyle r} Радиус (лат. radius), радиус-вектор, радиальная полярная координата, удельная теплота фазового перехода, удельная рефракция (лат. rēfractiō), расстояние
S{\displaystyle S} Площадь поверхности (англ. surface area), энтропия[4], действие, спин (англ. spin), спиновое квантовое число (англ. spin quantum number), странность (англ. strangeness), главная функция Гамильтона, матрица рассеяния (англ. scattering matrix), оператор эволюции, вектор Пойнтинга
s{\displaystyle s} Перемещение (итал. spostamento), странный кварк (англ. strange quark), путь, пространственно-временной интервал (англ. spacetime interval), оптическая длина пути
T{\displaystyle T} Температура (лат. temperātūra), период (лат. tempus), кинетическая энергия, критическая температура, терм, период полураспада, критическая энергия, изоспин
t{\displaystyle t} Время (лат. tempus), истинный кварк (англ. true quark), правдивость (англ. truth), планковское время
U{\displaystyle U} Внутренняя энергия, потенциальная энергия, вектор Умова, потенциал Леннард-Джонса, потенциал Морзе, 4-скорость, электрическое напряжение
u{\displaystyle u} Верхний кварк (англ. up quark), скорость, подвижность, удельная внутренняя энергия, групповая скорость
V{\displaystyle V} Объём (фр. volume), электрическое напряжение (англ. voltage), потенциальная энергия, видность полосы интерференции, постоянная Верде (англ. Verdet constant)
v{\displaystyle v} Скорость (лат. vēlōcitās), фазовая скорость, удельный объём
W{\displaystyle W} Механическая работа (англ. work), работа выхода, W-бозон, энергия, энергия связи атомного ядра, мощность
w{\displaystyle w} Скорость, плотность энергии, коэффициент внутренней конверсии, ускорение
X

Ньютон (единица измерения) — Википедия

Материал из Википедии — свободной энциклопедии

У этого термина существуют и другие значения, см. Ньютон.

Нью́то́н (русское обозначение: Н; международное: N) — единица измерения силы в Международной системе единиц (СИ).

Ньютон — производная единица. Исходя из второго закона Ньютона она определяется как сила, изменяющая за 1 секунду скорость тела массой 1 кг на 1 м/с в направлении действия силы. Таким образом, 1 Н = 1 кг·м/с2.

В соответствии с общими правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы ньютон пишется со строчной буквы, а её обозначение — с заглавной. Такое написание обозначения сохраняется и в обозначениях других производных единиц, образованных с использованием ньютона. Например, обозначение единицы момента силы ньютон-метр записывается как Н·м.

Определение единицы силы, как силы, придающей телу с массой 1 килограмм ускорение в 1 метр в секунду за секунду, было принято для системы единиц МКС Международным комитетом мер и весов (МКМВ) в 1946 году. В 1948 году IX Генеральная конференция по мерам и весам (ГКМВ) ратифицировала данное решение МКМВ и утвердила для этой единицы наименование «ньютон». В Международной системе единиц (СИ) ньютон стал использоваться с момента её принятия XI ГКМВ в 1960 году[1][2].

Единица названа в честь английского физика Исаака Ньютона, открывшего законы движения и связавшего понятия силы, массы и ускорения. В своих работах, однако, Исаак Ньютон не вводил единиц измерения силы и рассматривал её как абстрактное явление.[3] Измерять силу в ньютонах стали спустя более чем два века после смерти великого учёного, когда была принята система СИ.

С другими единицами измерения силы ньютон связывают следующие выражения:

Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.

Кратные Дольные
величина название обозначение величина название обозначение
101 Н деканьютон даН daN 10−1 Н дециньютон дН dN
102 Н гектоньютон гН hN 10−2 Н сантиньютон сН cN
103 Н килоньютон кН kN 10−3 Н миллиньютон мН mN
106 Н меганьютон МН MN 10−6 Н микроньютон мкН µN
109 Н гиганьютон ГН GN 10−9 Н наноньютон нН nN
1012 Н тераньютон ТН TN 10−12 Н пиконьютон пН pN
1015 Н петаньютон ПН PN 10−15 Н фемтоньютон фН fN
1018 Н эксаньютон ЭН EN 10−18 Н аттоньютон аН aN
1021 Н зеттаньютон ЗН ZN 10−21 Н зептоньютон зН zN
1024 Н иоттаньютон ИН YN 10−24 Н иоктоньютон иН yN
     применять не рекомендуется

Что означает N-A? -определения N-A


Вы ищете значения N/A? На следующем изображении вы можете увидеть основные определения N/A. При желании вы также можете загрузить файл изображения для печати или поделиться им со своим другом через Facebook, Twitter, Pinterest, Google и т. Д. Чтобы увидеть все значения N/A, пожалуйста, прокрутите вниз. Полный список определений приведен в таблице ниже в алфавитном порядке.

Основные значения N/A

На следующем изображении представлены наиболее часто используемые значения N/A. Вы можете записать файл изображения в формате PNG для автономного использования или отправить его своим друзьям по электронной почте.Если вы являетесь веб-мастером некоммерческого веб-сайта, пожалуйста, не стесняйтесь публиковать изображение определений N/A на вашем веб-сайте.

Все определения N/A

Как упомянуто выше, вы увидите все значения N/A в следующей таблице. Пожалуйста, знайте, что все определения перечислены в алфавитном порядке.Вы можете щелкнуть ссылки справа, чтобы увидеть подробную информацию о каждом определении, включая определения на английском и вашем местном языке.

Что означает N/A в тексте

В общем, N/A является аббревиатурой или аббревиатурой, которая определяется простым языком. Эта страница иллюстрирует, как N/A используется в обмена сообщениями и чат-форумах, в дополнение к социальным сетям, таким как VK, Instagram, Whatsapp и Snapchat. Из приведенной выше таблицы, вы можете просмотреть все значения N/A: некоторые из них образовательные термины, другие медицинские термины, и даже компьютерные термины. Если вы знаете другое определение N/A, пожалуйста, свяжитесь с нами. Мы включим его во время следующего обновления нашей базы данных. Пожалуйста, имейте в информации, что некоторые из наших сокращений и их определения создаются нашими посетителями. Поэтому ваше предложение о новых аббревиатур приветствуется! В качестве возврата мы перевели аббревиатуру N/A на испанский, французский, китайский, португальский, русский и т.д. Далее можно прокрутить вниз и щелкнуть в меню языка, чтобы найти значения N/A на других 42 языках.

Обозначения физических величин

Величины

Наименование

Обозначение

Механические величины

Вес

G, P, W

Время

t

Высота

h

Давление

p

Диаметр

d

Длина

l

Длина пути

s

Импульс (количество движения)

p

Количество вещества

ν, n

Коэффицент жесткости (жесткость)

Ʀ

Коэффицент запаса прочности

Ʀ, n

Коэффицент полезного действия

η

Коэффицент трения качения

Ʀ

Коэффицент трения скольжения

μ, f

Масса

m

Масса атома

ma

Масса электрона

me

Механическое напряжение

σ

Модуль упругости (модуль Юнга)

E

Момент силы

M

Мощность

P, N

Объем, вместимость

V, ϑ

Период колебания

T

Плотность

ϱ

Площадь

A, S

Поверхностное натяжение

σ, γ

Постоянная гравитационная

G

Предел прочности

σпч

Работа

W, A, L

Радиус

r, R

Сила, сила тяжести

F, Q, R

Скорость линейная

ϑ

Скорость угловая

ώ

Толщина

d, δ

Ускорение линейное

a

Ускорение свободного падения

g

Частота

ν, f

Частота вращения

n

Ширина

b

Энергия

E, W

Энергия кинетитеская

EƦ

Энергия потенциальная

Ep

Акустические величины

Длина волны

λ

Звуковая мощность

P

Звуковая энергия

W

Интенсивность звука

I

Скорость звука

c

Частота

ν, f

Тепловые величины и величины молекулярной физики
Абсолютная влажность

a

Газовая постоянная (молярная)

R

Количество теплоты

Q

Коэффицент полезного действия

η

Относительная влажность

ϕ

Относительная молекулярная масса

Mr

Постоянная (число) Авогадро

NA

Постоянная Больцмана

Ʀ

Постоянная (число) Лошмидта

NL

Температура Кюри

TC

Температура па шкале Цельсия

t, ϴ

Температура термодинамическая (абсолютная температура)

T

Температурный коэффицент линейного расширения

a, ai

Температурный коффицент объемного расширения

β, av

Удельная теплоемкость

c

Удельная теплота парообразования

r

Удельная теплота плавления

λ

Удельная теплота сгорания топлива (сокращенно: теплота сгорания топлива)

q

Число молекул

N

Энергия внутренняя

U

Электрические и магнитные величины

Диэлектрическая проницаемость вакуума (электрическая постоянная)

Ԑo

Индуктивность

L

Коэффицент самоиндукции

L

Коэффицент трансформации

K

Магнитная индукция

B

Магнитная проницаемость вакуума (магнитная постоянная)

μo

Магнитный поток

Ф

Мощность электрической цепи

P

Напряженность магнитного поля

H

Напряженность электрического поля

E

Объемная плотность электрического заряда

ϱ

Относительная диэлектрическая проницаемость

Ԑr

Относительная магнитная проницаемость

μr

Плотность эенгии магнитного поля удельная

ωm

Плотность энергии электрического поля удельная

ωэ

Плотность заряда поверхностная

σ

Плотность электрического тока

J

Постоянная (число) Фарадея

F

Проницаемость диэлектрическая

ԑ

Работа выхода электрона

ϕ

Разность потенциалов

U

Сила тока

I

Температурный коэффицент электрического сопротивления

a

Удельная электрическая проводимость

γ

Удельное электрическое сопротивление

ϱ

Частота электрического тока

f, ν

Число виток обмотки

N, ω

Электрическая емкость

C

Электрическая индукция

D

Электрическая проводимость

G

Электрический момент диполя молекулы

p

Электрический заряд (количество электричества)

Q, q

Электрический потенциал

V, ω

Электрическое напряжение

U

Электрическое сопротивление

R, r

Электродвижущая сила

E, Ԑ

Электрохимический эквивалент

Ʀ

Энергия магнитного поля

Wm

Энергия электрического поля

Wэ

Энергия Электромагнитная

W

Оптические величины

Длина волны

λ

Освещенность

E

Период колебания

T

Плотность потока излучения

Ф

Показатель (коэффицент) преломления

n

Световой поток

Ф

Светасила объектива

f

Сила света

I

Скорость света

c

Увеличение линейное

β

Увеличение окуляра, микроскопа, лупы

Ѓ

Угол отражения луча

έ

Угол падения луча

ԑ

Фокусное расстояние

F

Частота колебаний

ν, f

Энергия излучения

Q, W

Энергия световая

Q

Величины атомной физики

Атомная масса относительная

Ar

Время полураспада

T1/2

Дефект массы

Δ

Заряд электрона

e

Масса атома

ma

Масса нейтрона

mn

Масса протона

mp

Масса электрона

me

Постоянная Планка

h, ħ

Радиус электрона

re

Величины ионизирующих излучений
Поглощеная доза излучения (доза излучения)

D

Мощность поглощенной дозы излучения

Ď

Активность нуклида в радиоактивном источнике

A

что обозначают буквой N в физике?и в чем измеряют?

Буквой N обозначают силу реакции опоры. Это сила, которая действует на само тело со стороны опоры или подвеса. <img src=»//content.foto.my.mail.ru/mail/my_number_is_47/_answers/i-25.jpg» >

вроде колличество…. если не ошибаюсь… в шт.

Этой буквой в физике обозначают мощность. Измеряют в лошадиных силах, ваттах и т. д

если не ошибаюсь, то это мощность ( работа, выполненная за единицу времени) изверяется в ваттах и киловаттах

А ведь верно) ) N — реакция опоры

Мощность, блядь

мощность обозначается буквой N !!!

ХМ А МОЖЕТ И МОЩЬНОСТЬ ))

Также этой буквой обозначают, число оборотов, если речь идёт о движение по окружности!!!

а как же сила нормального давления? тоже буква N

в общем, это и мощность, и сила реакции опоры, и число оборотов

Н — мощность — измеряется в ваттах

Узнай тут: смотри в источник

мощность конечно)))

Отправить ответ

avatar
  Подписаться  
Уведомление о