Водоподготовка обратный осмос – что это такое, схема подключения и установки системы фильтрации и очистки по такому методу, а также когда нужен минерализатор

Содержание

Установка обратного осмоса: сборка по схеме, инструкция, монтаж своими руками

Автор Пётр Андреевич На чтение 14 мин. Опубликовано

Водопроводная вода, централизовано подаваемая в жилые помещения, непригодна для питья из-за наличия посторонних примесей. Для отделения механической взвеси и растворов посторонних веществ используется методика отстаивания и последующего кипячения. Установка обратного осмоса позволяет ускорить процедуру очистки и повысить качество питьевой воды.

Типовая схема подключения обратного осмоса

Перед началом монтажа рекомендуется изучить схему устройства осмотической системы и определить направление движения жидкости. Фильтрующий блок подключается к тройнику, врезанному в водопроводную магистраль. Затем жидкость проходит через угольные элементы, очищаясь от мелкодисперсной взвеси.

В конструкции блока предусмотрен насос с приводом от электрического двигателя, который обеспечивает подачу воды под давлением к мембранному фильтру (часть блоков не оснащается насосами).

схема установки обратного осмоса без помпысхема установки обратного осмоса без помпыСхема фильтра предусматривает установку 2 шлангов, один из которых предназначен для слива загрязненного раствора в канализационный канал.

Очищенная вода сливается по второй трубке в отдельный бак, имеющий вместимость до 12 л. Использование накопительного резервуара обязательно, поскольку производительность осмоса для дома не превышает 7 л в час.

На выходе из накопителя установлен дополнительный модуль минерализации. Допускается использование 2 выходов, подающих к 2-вентильному распределительному крану очищенную и минерализованную воду.

Монтаж системы обратного осмоса по стандартной инструкции

Пользователь может подключить обратный осмос самостоятельно по инструкции, прилагаемой к оборудованию. Производители фильтров используют различную конфигурацию узлов, но общая схема соединения компонентов остается неизменной.

Как установить обратный осмос своими руками по схеме: инструкция по сборке и монтажуКак установить обратный осмос своими руками по схеме: инструкция по сборке и монтажуСхема 2 подключения обратного осмоса

В состав системы входит многоступенчатый фильтр предварительной очистки, который связан с мембранным элементом осмоса. Затем вода перекачивается в накопитель, после чего проходит дополнительный цикл минерализации (устанавливается по желанию). Затем жидкость распределяется при помощи крана, размещенного на мойке.

Гибкие трубки крепятся при помощи пластиковой цанги, которая закрывается транспортировочной заглушкой. Магистраль вставляется в механизм на 15-20 мм (до упора), затем на внешнюю часть натягивается стопорное кольцо механизма.

Методика крепления шлангов унифицирована для всех производителей фильтров. Для разъединения деталей следует надавить на цанговый зажим до упора, одновременно вытягивая трубку из посадочного гнезда.

Изучаем работу фильтра

Как установить обратный осмос своими руками по схеме: инструкция по сборке и монтажуКак установить обратный осмос своими руками по схеме: инструкция по сборке и монтажу

Осмотический фильтр представляет собой устройство цилиндрической конфигурации, оснащенное пластиковым защитным кожухом. Мембрана устройства набрана из пакета фильтрующих элементов, свернутых рулоном, которые герметизированы по 3 граням.

Как установить обратный осмос своими руками по схеме: инструкция по сборке и монтажуКак установить обратный осмос своими руками по схеме: инструкция по сборке и монтажу

К четвертой кромке подсоединяется трубка с перфорированными стенками, обеспечивающая отвод загрязненного раствора в канализационный слив. На внешней поверхности фильтрующего материала располагается сепаратор из мелкоячеистой сетки, который дополнительно усиливает конструкцию.

Поток загрязненной воды, подаваемый помпой, прогоняется через полупроницаемые мембраны. На выходе фильтрующего блока расположен канал для слива отстоя (концентрат) и очищенной воды (пермеат). Поскольку на мембранах оседают примеси, то практикуется периодическое обслуживание устройства с промывкой полостей химическим раствором.

Выбираем место установки

Поскольку оборудование имеет увеличенные размеры, то рекомендуется разместить компоненты под мойкой. Необходимо предусмотреть доступ к фильтрующим блокам для замены картриджей или обслуживания трубок.

Перед тем как установить бытовую установку осмотической системы, необходимо убедиться в совместимости компонентов. Учитывается необходимое давление в мембранном модуле, температурный диапазон жидкости в магистрали холодного водоснабжения (зависит от климатических условий и изоляции труб), а также необходимое давление на входе в осмос.

установка обратного осмоса под мойкуустановка обратного осмоса под мойкуТехнические параметры указываются в документации, прилагаемой к оборудованию. Жители крупных городов (например, Москва или Санкт-Петербург) могут ознакомиться с образцами оборудования, выставленными в торговых центрах. Жителям населенных пунктов, в которых нет розничных поставщиков оборудования, придется искать информацию перед покупкой самостоятельно.

Перед стартом монтажных работ производится отключение водоснабжения с последующим сливом воды из магистрали через кран смесителя.

Применение электрического двигателя в блоке осмоса предусматривает расположение розетки напряжением 220 В в зоне установки оборудования. Рекомендуется устанавливать устройство, оснащенное брызгозащищенным корпусом, кабель прокладывается по стене в защитном гофрированном рукаве или укладывается в прорезанный канал. Место размещения розетки не должно подвергаться заливанию водой, рекомендуется предусмотреть в цепи отдельный автоматический предохранитель и защитное устройство (УЗО), снижающее риск поражения электрическим током.

Устанавливаем питьевой кран

Металлические или керамические мойки оснащаются стандартным посадочным гнездом для установки смесителя. На части изделий предусматривается дополнительный канал, предназначенный для размещения носика дозатора моющего средства.

питьевой кранпитьевой кранВладелец может использовать имеющееся отверстие, в противном случае канал придется просверлить самому. Для сверления керамики используется специальное сверло. Допускается разместить раздаточный кран осмоса на столешнице кухонного гарнитура (рядом с местом размещения мойки).

Для установки крана рекомендуется использовать плоскую поверхность, что обеспечивает герметизацию стыка резиновыми прокладками. Если при монтаже образуются щели, то через них попадает влага, разрушающая древесностружечную плиту столешницы.

Образовавшиеся зазоры заделываются специальным герметизирующим составом. Затем прокладываются шланги подсоединения, обеспечивающие связь крана с расходным баком. Трубки не должны иметь изгибов и участков с натяжением.

Если на кухне используется раковина без дополнительных отверстий, то требуется выполнить действия:

  1. Наметить место расположения крана, центр намечается тонким сверлом из твердого сплава. Для снижения вероятности откалывания материала практикуется нанесение малярного скотча или лейкопластыря. На металлических мойках наклеивать дополнительный скотч не требуется.
  2. Просверлить в металлическом рукомойнике отверстие диаметром 5-6 мм, используя режим пониженных оборотов. В керамических мойках или столешницах канал сверлится сверлом необходимого диаметра (11-12 мм).
  3. Расточить отверстие в металлической поверхности круглым напильником. На изделиях из других материалов производится удаление защитного материала. Неровности на кромке убираются абразивным инструментом.
  4. Установить в полученное отверстие основание крана, предусмотрев необходимые уплотнительные кольца (входят в комплект).
  5. Затянуть крепление, состоящее из гайки и прижимной шайбы. Для выполнения работ требуется ключ с удлиненной головкой.
  6. Подключить рукав подачи воды, для крепления используется штатная гайка, стык герметизируется резиновой прокладкой.
  7. Если пользователь планирует применять блок минерализации очищенной воды, то устанавливается дополнительный кран.

Подключаем систему к водопроводу

Врезка в водопроводную магистраль производится при помощи переходной втулки (тройника). Устройство размещается в удобном для владельца помещения месте, перед местом монтажа должен находиться запорный вентиль.

Как установить обратный осмос своими руками по схеме: инструкция по сборке и монтажуКак установить обратный осмос своими руками по схеме: инструкция по сборке и монтажуДля лучшей герметичности при монтаже тройника используйте гель.

Часть пользователей устанавливает переходник на наконечнике водопроводной трубы (на место соединения магистрали и гибкой подводки, идущей к основному смесителю).

Чтобы подключить систему очистки воды своими руками к магистрали, потребуется выполнить действия:

  1. Проверить отсутствие давления в системе холодного водоснабжения, а затем ключом отвернуть гайку крепления гибкой подводки.
  2. Накрутить на трубу переходник, обеспечивая герметичность стыка прокладкой и паклей или тефлоновой лентой, намотанной на резьбу. Затяжка производится гаечным ключом (разводного типа или газовым), прикладывать чрезмерные усилия запрещено.
  3. Демонтировать из корпуса переходника шаровой кран, оснащенный головкой для подсоединения пластиковой трубки.
  4. Надеть трубку на штуцер, а затем смонтировать кран на штатном месте.
  5. Разместить на адаптере гибкую подводку, которая затем фиксируется штатной гайкой.

Врезаемся в канализационную систему

Схема подключения обратного осмоса предусматривает установку трубки слива загрязненного концентрата в канализацию. Место установки штуцера располагается над поверхностью гидравлического затвора, расположенного в сифонном сливе.

Как установить обратный осмос своими руками по схеме: инструкция по сборке и монтажуКак установить обратный осмос своими руками по схеме: инструкция по сборке и монтажуХомут должен быть в комплекте!

Над корпусом сифона размещается пластиковый сливной патрубок, отверстие сверлится при помощи сверла диаметром 6-8 мм. Для фиксации штуцера используется специальный дренажный хомут, который удерживается на трубе 2 винтами.

Как установить обратный осмос своими руками по схеме: инструкция по сборке и монтажуКак установить обратный осмос своими руками по схеме: инструкция по сборке и монтажуУстановка дренажного хомута.

Хомут не допускается устанавливать в зоне изгиба пластиковой трубы. В конструкцию узла входят 2 несимметричные секции, конструкция деталей позволяет производить монтаж на трубах диаметром от 32 до 50 мм. По бокам на секциях предусмотрены ушки, в которые устанавливаются винты или болты с 6-гранной головкой (зависит от производителя). Для затягивания элементов используется плоская отвертка или гаечный ключ, прикладывать чрезмерные усилия не допускается.

Под хомут рекомендуется установить резиновую прокладку, которая смазывается клеем или слоем герметизирующего вещества. При монтаже обеспечивается равномерное затягивание крепежных элементов, поскольку перекос приводит к нарушению герметичности стыка.

Дополнительно контролируется соответствие отверстия в хомуте с просверленным каналом. Для повышения точности установки применяется сверло подходящего диаметра, которое вставляется в отверстия.

Ставим вентиль на накопитель

В схеме подключения фильтра с обратным осмосом имеется цилиндрический бак, предназначенный для накопления и хранения очищенной воды. Внутри емкости устанавливается эластичная мембрана и специальный вкладыш из полипропилена.

Нижняя часть резервуара заполнена в заводских условиях газом под давлением до 0,5 атмосфер, стравливать сжатый воздух запрещается. После завершения установки рекомендуется проверить уровень давления манометром и восстановить значение при помощи компрессора.

Резервуар устанавливается в вертикальном положении на напольном покрытии или на нижней полке кухонного гарнитура под мойкой. Бак поставляется вместе с подставкой, но допускается размещение емкости на специальных кронштейнах на стене помещения или боковой стенке кухонного гарнитура. Часть изделий допускает монтаж под наклоном или в горизонтальном положении, информация приводится в заводской документации.

Если ниша под мойкой недостаточна для размещения накопителя, то устройство выносится в соседний шкаф или ставится на полу. Для прокладки трубопровода выполняются дополнительные отверстия в стенках гарнитура.

Как установить обратный осмос своими руками по схеме: инструкция по сборке и монтажуКак установить обратный осмос своими руками по схеме: инструкция по сборке и монтажу

Бак поставляется заказчикам без краника, который вкручивается в предусмотренную производителем втулку. Рекомендуется уплотнить резьбу специальной лентой или паклей. Кран вкручивается в посадочное гнездо рукой до упора, применять дополнительный инструмент не следует.

Устанавливаем фильтрационный блок

Следующим этапом установки фильтра обратного осмоса своими руками является монтаж блока фильтров. Производители снабжают оборудование гибкими шлангами, имеющими длину до 1500 мм. Устройство должно размещаться так, чтобы шланги не перекручивались и не находились под натяжением в процессе работы.

Колбы вешаются на стену помещения или мебели, следует предусмотреть зазор, необходимый для снятия картриджей. Для установки блока используется направляющая планка, часть моделей оборудована корпусами с интегрированными монтажными планками.

Поскольку для отворачивания защитной колбы картриджа требуется использовать инструмент, то предусматривается свободная зона вокруг оборудования. Дополнительно обеспечивается беспрепятственный доступ к шаровому крану, расположенному на блоке. Фильтрационные блоки поставляются собранными, но часть моделей передается заказчику с демонтированными картриджами, которые устанавливаются перед монтажом блока на стене.

расположение картриджей для обратного осмосарасположение картриджей для обратного осмосаПеред сборкой картриджи распаковываются, снимается защитная пленка. Затем изделия устанавливаются в корпус с соблюдением последовательности и рекомендаций изготовителя. В конструкции изделий используются резиновые уплотнители, которые герметизируют стыки.

Прокладки ставятся без перекосов, контактирующие поверхности предварительно очищаются. Затем на верхнюю часть корпуса устанавливается блок осмоса, который фиксируется пластиковыми зажимами. По аналогичной схеме монтируются дополнительные элементы, штуцеры соединяются трубками.

Водопровод соединяется с фильтрующим блоком, состоящим из 3-5 кассет (зависит от производителя и модели оборудования). Затем коммутируется мембранный блок, выходы соединяются с канализационным сливом и накопительным резервуаром. От бака шланг выводится к дополнительному фильтру, к которому подсоединяется распределительный кран. Пользователи при подключении осмоса используют дополнительный блок минерализации воды, который подключается к дополнительному крану на мойке.

Поскольку мембранный фильтр поставляется разобранным, то необходимо открыть крышку корпуса при помощи ключа. Кассета вставляется в полость кожуха до упора в ограничительную площадку.

Крышка закручивается в штатное место, а затем устанавливается сливная трубка. Для облегчения процедуры сборки детали смазываются силиконовой смазкой, обеспечивающей дополнительную герметизацию стыков.

Наполняем и промываем фильтры

После того как пользователь закончил устанавливать обратный осмос своими руками, требуется проверить герметичность системы. После открытия всех вентилей осматриваются корпуса фильтрующих элементов и места соединения магистралей. Не допускается образование капель на стыках, при обнаружении течи следует перекрыть воду и обеспечить герметичность разъема.

Схема очерёдности картриджей. Схема очерёдности картриджей. Схема очерёдности картриджей. При первой подаче, вода может быть мутной, это нормально. Первую неделю хотя бы раз в день осматривайте систему, чтобы не было протечек.

Если течей не обнаружено, то открывается вентиль блока очистки и кран подачи воды в осмос. Затем подключается питание насоса и открывается вентиль распределительного крана на мойке. Давление в магистрали холодного водоснабжения обеспечивает вытеснение воздуха из полостей фильтров. Через 5-10 минут из гусака начинает течь вода, прошедшая через фильтрующие блоки (подача жидкости в накопитель не производится). Производители оборудования рекомендуют промывать полости картриджей на протяжении 1,5-2 часов.

После промывки вентиль распределительного смесителя перекрывается на 10 минут, пользователь проводит повторный осмотр компонентов системы на предмет течи жидкости. После проведения осмотра открывается кран, включающий в систему накопительный резервуар. Монтажники, занимающиеся установкой фильтрующего оборудования, рекомендуют проводить профилактические осмотры магистралей на протяжении недели после ввода установки в эксплуатацию.

Бак заполняется на протяжении нескольких часов, время зависит от напора воды и емкости резервуара. Производители изделий рекомендуют произвести слив жидкости, что позволяет дополнительно промыть фильтрующие элементы и внутренности резервуара. Сливаемая жидкость может иметь мутный цвет из-за пузырьков воздуха, вытесняемых их картриджей. Помутнение воды при первичном заполнении является нормой и не указывает на неисправность угольных картриджей или блока осмоса. Вода начинает использоваться для питья после второго или третьего заполнения емкости.

Установка дополнительных элементов по схеме

Производители оборудования выпускают дополнительные компоненты, которые приобретаются и монтируются владельцем по желанию:

  1. Контрольный манометр, позволяющий определять давление в системе холодного водоснабжения. Для установки манометра используется врезка трехходового вентиля.
  2. Регулятор давления позволяет защитить оборудование от гидравлических ударов, возникающих при перебоях водоснабжения.
  3. Блок защиты от протечек, обеспечивающий перекрытие воды при обнаружении течи. Устройство оснащается контактами и батарейкой, при замыкании цепи водой подается сигнал к вентилю с силовым приводом. Устройство не защищает помещение от затопления при разрыве участка трубопровода перед запорным краном.
  4. Дополнительный блок, удаляющий из воды соли азотной кислоты.
  5. Четырехходовой перепускной клапан, который используется для прекращения подачи воды при заполнении накопительного резервуара.
Насос для повышения давления

Конструкция мембранного фильтра требует подачи воды под давлением, параметров водопроводной сети для продавливания жидкости через фильтрующие элементы недостаточно. Производители устанавливают нижний порог давления воды на уровне 2,8 атмосфер, для повышения напора используется повышающий насос.

Как установить обратный осмос своими руками по схеме: инструкция по сборке и монтажуКак установить обратный осмос своими руками по схеме: инструкция по сборке и монтажу

Помпа устанавливается на входе или выходе из фильтрующего блока. Для снижения затрат электроэнергии практикуется установка датчика давления с выключателем, который автоматически разрывает цепь питания при росте давления в водопроводной сети.


Помпа оснащается пластиковым корпусом, устройство крепится на стену или резервуар для воды при помощи специальных кронштейнов. Конструкция допускает вертикальную или горизонтальную установку, часть владельцев монтирует дополнительный редукционный клапан, предотвращающий рост давления на входе в нагнетающий узел.
Ультрафиолетовая лампа

Отмечены случаи, когда в корпусе фильтра осмоса начинали размножаться бактерии или водоросли. Проблема возникает в летний период из-за повышения температуры воды, а также при длительных простоях оборудования. Образовавшиеся на стенках наросты ухудшают проходимость фильтра, для очистки устройства используется ультрафиолетовая лампа. В комплекте со светильником поставляется адаптер питания, снижающий напряжение в цепи и преобразующий переменный ток в постоянный.

Узел располагается на входе в корпус осмоса или в магистрали на участке между фильтром и накопительным баком, герметичный корпус не допускает короткого замыкания при попадании влаги. По мысли создателей ультрафиолетовое излучение обрабатывает воду через прозрачные стенки трубки. Если внутри осмоса образовался налет водорослей и грязи, то рекомендуется разобрать устройство и промыть детали дезинфицирующим раствором.

Минерализатор для воды

Прошедшая через систему фильтров вода приобретает характерный кисловатый вкус, поскольку в жидкости отсутствуют растворы минеральных солей. Для восстановления характеристик используется минерализатор, насыщающий воду солями кальция, магния или цинка. Производители выпускают разные модели картриджей, обеспечивающие различную степень минерализации жидкости.

Как установить обратный осмос своими руками по схеме: инструкция по сборке и монтажуКак установить обратный осмос своими руками по схеме: инструкция по сборке и монтажуСхема 3 осмос с минерализатором. Узел размещается после осмоса, рекомендуется использовать двойной распределительный кран на мойке.

Часть воды подается из осмоса и не насыщается солями, а часть проходит через дополнительный блок. Подобная схема позволяет увеличить срок службы узла, поскольку вода вымывает запас солей, заложенный во внутренние полости корпуса.

Советы по эксплуатации и интересное видео

Для устранения застоя воды и появления неприятного запаха от очищенной жидкости рекомендуется ежедневно сливать из магистралей 0,5-1,0 воды. Производители рекомендуют производить замену картриджей фильтров предварительной очистки через 0,5 года эксплуатации. Угольный элемент финишной очистки рассчитан на срок службы до 1 года, а картридж осмоса сохраняет работоспособность на протяжении 2,5 лет.

Для проверки состояния фильтрующих элементов используются тестовые полоски, определяющие уровень содержания солей в воде.

При промывке угольного картриджа, производящейся струей холодной воды, рекомендуется снимать для очистки остальные элементы. Использовать для удаления загрязнений горячую воду не рекомендуется. Забитый грязью угольный элемент приводит к ускоренному засорению мембранного осмоса. Засорение канализации ухудшает отвод концентрата, который забивает устройство, выводя его из строя.

При обнаружении на стенках чайника накипи (при использовании очищенной воды) требуется проверить состояние картриджей и корректность подключения оборудования. Дефект наблюдается при ошибочной коммутации осмоса, когда в канализацию сливается очищенная вода, а концентрат подается в распределительный кран на мойке.

Для снижения риска ошибки рекомендуется промаркировать трубки при монтаже оборудования (маркером или разноцветными этикетками).

Как установить обратный осмос своими руками по схеме: инструкция по сборке и монтажу

Особенности подготовки воды обратным осмосом. Предварительная подготовка воды

Водоподготовка. Проекты водоподготовки для промышленности

 

Исключительной особенностью очистки воды методом обратного осмоса является эффективное удаление всех классов примесей, содержащихся в воде.

Это обусловлено строением мембранных элементов, фильтрующая способность которых основана на наличии пор (полупроницаемый слой) с размером составляет менее 0,1 нм.

Среди примесей, часто встречающихся в воде и эффективно удаляемых обратным осмосом, можно отметить следующие:

  • хлориды,
  • сульфаты,
  • катионы солей жесткости (кальций, магний, стронций, барий),
  • нитраты и нитриты,
  • бор,
  • железо,
  • марганец,
  • органические молекулы,
  • все бактерии и вирусы (в том числе те виды, которые нечувствительны к другим методам обеззараживания),
  • нефтепродукты,
  • поверхностно-активные вещества,
  • минеральные и органические удобрения,>
  • пестициды, гербициды,
  • соли многозарядных катионов, тяжелых металлов,
  • радионуклиды,
  • многие другие примеси.

Благодаря своим фильтрующим свойствам, обратноосмотические мембранные элементы превосходно удаляют низкомолекулярные органические, в том числе гуминовые соединения, которые придают воде желтоватый оттенок («болотная вода») и ухудшают ее вкусовые свойства. Данные соединения другими методами практически не удаляются.

Высокая степень очистки (до 99,7%) позволяет гарантировать высокое качество очищенной воды даже в случае значительного изменения состава исходной воды, что может наблюдаться у поверхностных источников.

Стоит отметить, что высокая фильтрующая способность накладывает ряд ограничений на применение мембранных элементов — некоторые примеси могут блокировать фильтрующую поверхность, что приводит к уменьшению производительности установки и снижению ресурса мембран.
Так взвешенные вещества физически блокируют поверхность мембранных элементов, снижая площадь фильтрации, а растворенные соли вызывают эффект поляризации в примембранном слое воды, что повышает осмотическое давление и снижает эффективность процесса очистки.
При подаче воды с высоким содержанием активного хлора, происходит необратимая деградация мембранных элементов, что проявляется в увеличении пропускной способности (поток через мембрану большой) и, одновременно, снижении селективности мембран.

Снятие описанных выше негативных эффектов может быть осуществлено с помощью грамотно разработанной, в соответствии с анализом исходной воды, и внедренной системой предварительной подготовки воды.

Предварительная подготовка воды перед подачей на установки обратного осмоса.

Предварительная подготовка исходной воды может включать в себя следующие стадии.

1. Грубая механическая очистка.

 Водоподготовка. Проекты водоподготовки. Грубая механическая очистка 

Осуществляется на сетчатых или дисковых фильтрах с различной микронностью. Позволяет защитить оборудование от попадания крупных твердых части.

 

 

  

 

 

 

 

 

 

 

2. Тонкая механическая очистка.

 Водоподготовка. Проекты водоподготовки. Тонкая механическая очистка 

Для тонкой очистки наиболее часто используются осветлительные напорные фильтры с зернистой загрузкой.
Значительный слой (более 1 метра) мелкозернистого (0,6- 1,6 мм) фильтрующего материала эффективно задерживает нерастворимые частицы размером свыше 20 мкм (более мелкие частицы задерживаются с меньшей эффективностью), что позволяет значительно снизить нагрузку на мембранные элементы, обусловленную загрязнением коллоидными примесями.

При подаче высокомутной воды из поверхностного источника или сточной воды наиболее эффективно применение установок ультрафильтрации в качестве предварительной очистки перед обратным осмосом. Преимущество ультрафильтрационных мембранных модулей заключается в возможности проведения промывки обратным током воды, что позволяет удалять даже плотные отложения загрязнений с поверхности мембран. Специальный полимерный материал мембранных элементов выдерживает воздействия концентрированных промывочных растворов.

При незначительных потоках воды можно использовать систему картриджных фильтров с размером пор 5-25 мкм. Данное решение является самым простым, но наименее эффективным и достаточно ресурсоемким при эксплуатации.

 

3. Обезжелезивание.

Мембранные установки эффективно удаляют железо в растворенной форме из воды, а современные мембраны являются устойчивыми к соединениям железа. Из многолетнего опыта работы с установками обратного осмоса было установлено, что концентрация двухвалентного железа в исходной воде, без присутствия трехвалентного (при очистки воды из скважин), в количестве до 6-8 мг/л не вызывает затруднений в работе обратноосмотических установок.
Такая вода при определенных условиях может быть подана на вход мембранной установки без предварительного обезжелезивания.

Тем не менее, в некоторых случаях может наблюдаться снижение ресурса мембранных элементов вследствие появления отложений соединений железа на их поверхности (например, при подаче на мембраны окисленного железа в большом количестве).
Необходимость предварительного обезжелезивания для повышения ресурса мембран определяется многими факторами: концентрация железа, его форма, сопутствующие примеси. Немалую роль играет водородный показатель исходной воды.
Для предварительного обезжелезивания в воду, как правило, вводят окислители (наиболее безопасным вариантом является использование кислорода при аэрации воздухом) для перевода двухвалентного железа в трехвалентное состояние, вследствие чего гидроксид железа (III) выпадает в осадок и затем отфильтровывается на поверхности фильтрующей загрузки. Для ускорения процесса перехода в нерастворимую форму и повышения эффективности процесса обезжелезивания в качестве фильтрующей загрузки фильтров-обезжелезивателей используют специальные материалы, обладающие каталитической активностью.
Использовать хлорсодержащие химические реагенты и другие сильные окислители перед подачей на установки обратного осмоса категорически не рекомендуется, т. к. при наличии остаточных концентраций этих веществ может происходить быстрая деградация мембран.

 

4. Умягчение.

 Водоподготовка. Проекты водопоготовки. Обезжелезивание.

Мембранные установки являются действенным способом умягчения и используются для эффективного и стабильного удаления из воды солей жесткости.
Следует отметить, что при подаче жесткой воды на установки обратного осмоса напрямую, на поверхности мембранных элементов происходит сильное концентрирование солей, вследствие чего производительность и селективность мембран снижается, а гидрокарбонаты и сульфаты образуют плотный нерастворимый осадок на поверхности мембраны.
Эффективным и экономичным способом предотвращения отложения солей жесткости на мембранах является дозирование ингибиторов осадкообразования. Механизм действия ингибиторов основан на том, что молекулы или ионы активного реагента сорбируются на поверхности образовавшихся микрокристаллов и препятствуют их дальнейшему росту. С учетом механизма роста кристаллов (послойно или на дефектах кристаллической решетки), торможение роста происходит при блокировке точек, где может происходить присоединение новых атомов, формирующих кристалл, количество таких точек ограничено.

Ингибитор вводится непосредственно в поток исходной воды перед входом на установку обратного осмоса.

При использовании умягчения на ионообменных смолах — натрий-катионирование — очистка воды производится путем ее контактирования с катионитом в Na-форме. В результате этого из воды извлекаются ионы кальция, магния (то есть понижается жесткость) и частично ионы железа (II), замещаясь ионами натрия. При этом солесодержание и pH исходной воды практически не меняется. Однако, что особенно важно для при употреблении воды в питьевых или , умягченная вода характеризуется повышенным содержанием натрия и не всегда является пригодной. После умягчения на ионообменных смолах избыток натрия и других катионов и анионов может быть удален с только помощью установок обратного осмоса.

 

5. Дехлорирование (дегазация).

При наличии в воде свободного активного хлора, что может встречаться в воде из централизованных систем водоснабжения, воду необходимо дехлорировать для предотвращения деградации мембранных элементов. Чаще всего для этого используют сорбционный напорный фильтр с загрузкой активированного угля из скорлупы кокосового ореха.

Активированный уголь не только сорбирует свободный хлор, но и переводит его в безопасно состояние по каталитическом механизму за счет расположенных на его поверхности различных активных групп. Помимо этого, так же удаляются низкомолекулярные органические соединения и растворенные газы, присутствующие в воде, что улучшает вкус и другие органолептические свойства воды.

 

6. Обеззараживание.

 Водоподготовка. Проекты водоподготовки. Обеззараживание.

Обеззараживание перед установкой обратного осмоса применяется крайне редко, только если в исходной воде присутствует большое количество микроорганизмов, вызывающих зарастание мембран биопленками, например, при водозаборе, производимом из открытых водоемов: пруд, река, озеро.

Микробиологическое загрязнение исходной воды не влияет на качество очистки, т. к. мембрана является надежным барьером для бактерий и вирусов. Однако, ресурс мембранных элементов может понижаться.

 

 

Обратный осмос, системы обратного осмоса

КАТАЛОГ СИСТЕМ ПРОМЫШЛЕННОГО ОБРАТНОГО ОСМОСА

Процесс обратного осмоса, как способ очистки воды, используется с начала 60-х годов. Первоначально он применялся для опреснения морской воды. Сегодня по принципу обратного осмоса в мире производятся сотни тысяч тонн питьевой воды в сутки.

Совершенствование технологии сделало возможным применение обратноосмотических систем в домашних условиях. На настоящий момент в мире уже установлены тысячи таких систем. Получаемая обратным осмосом вода имеет уникальную степень очистки. По своим свойствам она близка к талой воде древних ледников, которая признается наиболее экологически чистой и полезной для человека. Информация об устройствах очистки воды на основе мембран обратного осмоса, предлагаемых группой компаний WATER.RU представлена в подразделе «Мембранные системы» раздела «Продукция».

Устройство и принцип действия мембранных систем обратного осмоса

Деминерализация исходной воды в обратноосмотическом модуле основана на принципе обратного осмоса – отделение деминерализованной воды от минерализованной через тонкопленочную полупроницаемую мембрану под давлением выше осмотического (баромембранный процесс), которое для заданных условий и типа применяемых мембран составляет от 8-12 bar для слабоминерализованных вод до 55 – 60 bar для морской воды. При таком давлении через поры синтетических композитных мембран проходят молекулы чистой воды и задерживаются гидратированные солеобразующие ионы: НСО3-, SO2-, С1-, Са2+, Mg2+, Na+, K+, Fe2+, Cu2+ и ряд других микроэлементов, имеющие значительно больший размер.

Следует иметь в виду, что полезная производительность модуля (по деминерализованной воде) не равна производительности насоса высокого давления, а всегда меньше, что в свою очередь зависит от температуры и ионного состава исходной воды – в основном от сульфатно-кальциевого соотношения и общей минерализации.

Установка обратного осмоса или мембранный модуль состоит из:

  • патронного или мультипатронного фильтра тонкой очистки (тонкость фильтрации 5 мкм)
  • насоса высокого давления
  • мембранной группы
  • средств автоматики и регулирующих элементов
  • КИП
  • пульта управления
  • опорной рамной конструкции
  • системы промывки мембранных элементов CIP
Чертежи вы можете посмотреть здесь.

Конструктивное исполнения установки обратного осмоса определяется качественным составом исходной воды, уровнем общего солесодержания и количеством мембранных элементов необходимых для получения требуемой производительности установки. По конструктивному исполнению можно выделить три основные группы установок. В основе конструктивного и компоновочного решения лежит способ организации мембранной группы, который, в свою очередь, определяет процентное отношение очищенной воды и концентрата.

К первой группе мы относим установки малой производительности ( от 0,1 до 5 куб.м/час).

Основным отличием установок этой группы является то, что один или несколько мембранных элементов установлены в одном напорном корпусе. Такое решение позволяет разрабатывать и изготавливать простые и не дорогие системы обратного осмоса. Компоновка установок может быть вертикальной, в случае использования одного мембранного элемента или горизонтальной, когда используется несколько элементов.

Ко второй группе мы относим установки малой и средней производительности и установки для солоноватой воды.

Для установок этой группы характерно то, что несколько мембранных элементов установлены в два, параллельно подключенные напорные корпуса. Такое решение позволяет разрабатывать и изготавливать более сложные системы обратного осмоса с высоким выходом очищенной воды. Установки этой группы способны работать на более соленых водах, включая морскую. Компоновка — горизонтальная. Количество корпусов в мембранной группе может быть кратное 2.

И, наконец, самая интересная и сложная, третья группа установок высокой производительности. Особенностью этих установок является то, что концентрат с основной группы подается на дополнительную группу мембран, чем достигается высокий процент выхода чистой воды с установки. Такое решение позволяет доводить отношение фильтрата к концентрату до 75%, что в конечном итоге уменьшает общее энергопотребление установки, сброс в канализацию и стоимость очищенной воды. Однако необходимо учитывать, что дополнительная группа мембранных элементов работает в более тяжелых условиях, чем основная, а это вынуждает принимать дополнительные меры по восстановлению или промывке мембран. В обратноосмотических системах, которые мы относим к третьей группе, реализуется более сложная технологическая схема, аппаратная часть и алгоритм управления установкой.

Основу любой обратноосмотической установки составляет несущая рама. Разработке рам мы уделяем особое внимание. Рама не только определяет внешний вид установки. но и обеспечивает прочность и жесткость конструкции и оптимальную компоновку системы, что создает удобство в эксплуатации, обслуживании и ремонте как всей системы в целом, так и отдельных ее компонентов. Мы проектируем раму с учетом особенностей каждого конкретного объекта и изготавливаем на специализированном предприятии. Мы применяем рамы из нержавеющей стали или станочного алюминиевого профиля, реже, окрашенные металлические конструкции. В зависимости от требований к изделию рама обязательно укомплектована регулируемыми по высоте опорами или, дополнительно, колесными опорами.

На раме смонтированы: многоступенчатый центробежный насос, мембранная группа, 5 мкм мультипатронный фильтр, запорный электромагнитный клапан, реле давления и обратный клапан система промывки мембран. На передней панели рамы размещены ротаметры чистой воды и концентрата, манометры измерения давлений входной воды и рабочего давления, регулировочный вентиль изменения рабочего давления в линии концентрата и шкаф управления установкой. На трубопроводе в линии входной воды перед насосом последовательно смонтированы: фильтр тонкой очистки 5 мкм, электромагнитный нормально-закрытый клапан, реле защиты насоса «по сухому ходу» и обратный клапан.

На трубопроводе в линии деминерализованной воды установлен предохранительный клапан, обеспечивающий аварийный сброс воды при давлении в линии деминерализованной воды выше 3 bar и датчик кондуктометра – измерителя удельной электропроводимости обессоленной воды.

Проточные части насоса выполнены из нерж.стали, проточные части клапана и реле давления выполнены из латуни, монтаж трубопроводов выполнен из полипропилена, арматура и фитинги выполнены из нерж.стали, латуни и бронзы.

Обратноосмотический модуль полностью агрегатирован и подключается в составе установки водоподготовки к трубопроводам исходной воды, деминерализованной воды и слива в канализацию. Пульт управления модуля подключается к линии 3-х фазного переменного тока 380 В/ 50 Гц.

Принцип действия

Осмос

Явление осмоса лежит в основе обмена веществ всех живых организмов. Благодаря ему в каждую живую клетку поступают питательные вещества и, наоборот, выводятся шлаки.

Явление осмоса наблюдается, когда два соляных раствора с разными концентрациями разделены полупроницаемой мембраной.

Осмос

Эта мембрана пропускает молекулы и ионы определенного размера, но служит барьером для веществ с молекулами большего размера. Таким образом, молекулы воды способны проникать через мембрану, а молекулы растворенных в воде солей — нет.

Если по разные стороны полупроницаемой мембраны находятся солесодержащие растворы с разной концентрацией, молекулы воды будут перемещаться через мембрану из слабо концентрированного раствора в более концентрированный, вызывая в последнем повышение уровня жидкости. Из-за явления осмоса процесс проникновения воды через мембрану наблюдается даже в том случае, когда оба раствора находятся под одинаковым внешним давлением.

Разница в высоте уровней двух растворов разной концентрации пропорциональна силе, под действием которой вода проходит через мембрану. Эта сила называется «осмотическим давлением».

В случае, когда на раствор с большей концентрацией воздействует внешнее давление, превышающее осмотическое, молекулы воды начнут двигаться через полупроницаемую мембрану в обратном направлении, то есть из более концентрированного раствора в менее концентрированный.

Обратный Осмос

Этот процесс называется «обратным осмосом». По этому принципу и работают все мембраны обратного осмоса.

В процессе обратного осмоса вода и растворенные в ней вещества разделяются на молекулярном уровне, при этом с одной стороны мембраны накапливается практически идеально чистая вода, а все загрязнения остаются по другую ее сторону. Таким образом, обратный осмос обеспечивает гораздо более высокую степень очистки, чем большинство традиционных методов фильтрации, основанных на фильтрации механических частиц и адсорбции ряда веществ с помощью активированного угля.

Примечание

В системах обратного осмоса бытового назначения давление входной воды на мембрану соответствует давлению воды в трубопроводе. В случае, если давление возрастает, поток воды через мембрану также возрастает.

На практике, мембрана не полностью задерживает растворенные в воде вещества. Они проникают через мембрану, но в ничтожно малых количествах. Поэтому очищенная вода все-таки содержит незначительное количество растворенных веществ. Важно, что повышение давления на входе не приводит к росту содержания солей в воде после мембраны. Наоборот, большее давление воды не только увеличивает производительность мембраны, но и улучшает качество очистки. Другими словами, чем выше давление воды на мембране, тем больше чистой воды лучшего качества можно получить.

В процессе очищения воды концентрация солей со стороны входа возрастает, из-за чего мембрана может засориться и перестать работать. Для предотвращения этого вдоль мембраны создается принудительный поток воды, смывающий «рассол» в дренаж.

Эффективность процесса обратного осмоса в отношении различных примесей и растворенных веществ зависит от ряда факторов. Давление, температура, уровень рН, материал, из которого изготовлена мембрана, и химический состав входной воды, влияют на эффективность работы систем обратного осмоса.

Неорганические вещества очень хорошо отделяются обратноосмотической мембраной. В зависимости от типа применяемой мембраны (ацетатцеллюлозная или тонкопленочная композитная) степень очистки составляет по большинству неорганических элементов 85%-98%.

Мембрана обратного осмоса также удаляет из воды и органические вещества . Органические вещества с молекулярным весом более 100-200 удаляются полностью; а с меньшим — могут проникать через мембрану в незначительных количествах. Большой размер вирусов и бактерий практически исключает вероятность их проникновения через мембрану.

В то же время, мембрана пропускает растворенные в воде кислород и другие газы, определяющие ее вкус. В результате, на выходе системы обратного осмоса получается свежая, вкусная, настолько чистая вода, что она, строго говоря, даже не требует кипячения.

Подробнее ознакомиться с системами обратного осмоса вы можете здесь.


Водоподготовка обратным осмосом: все За и Против

 

Для современной жизни, необходима качественная вода. Но найти хорошую воду в первичных источниках сегодня невозможно. Обилие разного рода примесей делает наличие чистящих установок обязательным этапом в любой системе водоснабжения и отопления. С развитием же научно-технических достижений требования к воде стали расти. Некоторые производства требуют не просто чистую воду, а воду практически без каких-либо примесей. Потому водоподготовка осмос не зря сегодня идут практически в одной упряжке.

 

Зачем и почему нужен осмос в водоподготовке?

 

Причинами загрязнения воды могут быть не только подземные слои в виде полезных ископаемых и бытовые выбросы в реки. Ржавчина, осадок и даже песок могут появляться в трубах, за счет образования в них коррозии. Определенную часть примесей составляет строительный мусор, образовавшийся в трубах после строительства, ремонта или консервации труб на летний период.

Но наиболее вредными для человеческого здоровья, были и остаются соли тяжелых металлов. Именно они образуют на стенках оборудования не растворимые примеси, после кипячения воды. Многим кажется, что использование воды с высокой жесткостью неопасно. Но на самом деле, если постоянно потреблять такую воду, то примеси накапливаются в организме и  результате образуются камни и песок, которые приводят к печальным последствиям. Язва желудка, пиелонефрит – все это болезни, которые берут свое начало именно от некачественного питания и воды.

В естественных условиях, в природе мало бы что выжило, если не было бы естественной фильтрации, однако за счет изобретения новых материалов и веществ, естественная фильтрация просто не справляется. Потому водоподготовка осмос, ионный обмен и прочее используют сегодня, где только они необходимы, в различных вариациях.

Обратный осмос бывает так же разных видов и может устранять разного рода примеси. Он относится к мембранным фильтрам. Назначение каждого из мембранных очистителей представлены в таблице ниже.

Виды мембранных очистителей

Назначение

Обратный осмос

 

 

Нанофильтрация

— Устранение бактерий и вредных вирусов

— Устранение практически любых органических примесей

— Умягчение

— Устранение любых органических примесей

— Устранение практически любых включений солей на молекулярном уровне

Получается, что водоподготовка обратным осмосом сошлись вместе на этапе тонкой очистки воды. Осмос из-за своих внутренних тонких составляющих не терпит грубых элементов и легко может сломаться, потому, данный этап всегда ставят в конце системы очищения воды в квартире или на предприятии. Правда, дома, это очиститель для питьевой воды, исключительно.

Сама водоподготовка тоже может быть самой разной и не всегда осмос в ней применяется. Химическая она или безреагентная, но этапы каждый раз разные. Хотя отличия больше касаются состава фильтров, чем различаются по назначению.

Наиболее популярной чисткой воды считается обезжелезивание. Это связано, прежде всего, с высокой степенью износа водопроводного и отопительного оборудования. Чтобы устранить излишки железистых солей применяют все те же фильтры. Правда, железо убрать можно куда меньшим арсеналом – это воздухом для окисления и специальным песком, который удерживает железистые составляющие.

Если водоподготовка осмос содержит, а в воде есть железистые примеси, то перед системой осмоса обезжелезиватель используется в обязательном порядке. Есть на сегодня фильтрующие мембраны, которые в состояние устранять и очень мелкие железистые соединения. Но особого распространения они пока не получили из-за своей дороговизны.

 

Осмос – основные «за» и принципиальные «против»

 

Один из самых популярных видов осмоса – обратный. Такой вид очистки, не только способ очистить воду. Это еще и один из главных постулатов жизни на Земле.  Растворы, разделенные мембраной в животе у матери, неважно это человек или животное, но через эту мембрану зародыш питается, дышит.

Сам процесс очищения, проводимый при осмосе, был открыт давным-давно еще в Древней Греции Аристотелем. Но более подробные опыты и разработки в сфере водоподготовка осмос начались только в 18 веке.

Основу работы осмоса составило обычное продавливание. Воду под давлением проталкивают через мембрану. Это очень тонкая полупроницаемая материя. Поры у таких материй достигают размера 200 дальтон.

Со  временем материи забиваются, их нужно промывать и потом менять. Такой малый диаметр ячеек позволяет легко отфильтровывать ненужные примеси даже самых микроскопических размеров. Естественно такая тонкая фильтрация дает возможность удалять практически все органические примеси. Но это же и дает методу очищения свои за и против.

Каковы же недостатки у этого способа устранить почти все примеси?

  • Новомодные материалы для мембранных перегородок могут быть опасны, споры об их полезности ведутся до сих пор и их безопасность не доказана;
  • Слишком чистая вода приносит вред человеческому организму, считают некоторые ученые. По их мнению, она помогает вымыть из организма жизненно важные минералы;
  • Низкая производительность метода;
  • Невозможность убрать воздушные примеси;
  • Легко портятся мембраны – мгновенно практически забиваются от стронция,  карбоната кальция, сульфата бария и пр.
  • Нельзя использовать без предварительной чистки воды;
  • На процесс влияет температура воды, с горячей водой не рекомендуется использовать.

И наконец, плюсы систем обратного осмоса в водоподготовке. Сравнение даст возможность, определить для себя каждому потребителю, подходит ли ему такой вариант водоподготовка осмос?  Самое первое достоинство – это высокое качество очистки воды. По эффективности очистки осмос никто не догонит.

Второй неоспоримый плюс относится к результатам. Не важно, сколько примесей в исходной воде в конце она будет одинаково чистой.

Третье – осмос экологически безопасен, никаких реагентов в его работе не используется.

Вот и получается, что при значительных и весомых достоинствах, осмос имеет значительные недостатки, значительно ограничивающие его применение. И хоть он стремиться вытеснить другие способы очищения воды на сегодня это по – прежнему ему не удается. Так для водоподготовки обратным осмосом важен и даже необходим, если вода  нужна питьевая. Но вытеснить полностью тот же несгораемый ионный обмен, все же не удается. Да и некоторых отраслях для получения технической воды осмос не требуется.

Всё о системах обратного осмоса для частного дома. Фильтры Гейзер

Система обратного осмоса для коттеджа с промышленным оборудованием

Благодаря своей «всепоглощающей» способности, мембрана обратного осмоса служит в два-три раза меньше ионообменников и сорбентов, рассчитанных на тот же объем потребления воды. Поэтому с учетом эксплуатационных расходов, в том числе на частую смену мембран в бытовых фильтрах, для загородного дома бывает целесообразнее вместо описанной выше системы приобрести другую, с применением небольшой промышленной установки обратного осмоса.

Система обратного осмоса для коттеджа - типовая система обратного осмоса для установки в загородные дома и коттеджи На рисунке представлена типовая система обратного осмоса для установки в загородные дома и коттеджи.

Она состоит из трех блоков (слева направо):

  1. узел пропорционального дозирования специального реагента;

  2. установка обратного осмоса заданной производительности;

  3. накопительный бак (водяной аккумулятор).

Дополнительно на выходе из системы можно установить постфильтр на основе активированного угля для улучшения вкусовых качеств воды, накопившейся в баке, а также блок ультрафиолетового обеззараживания воды.

Узел пропорционального дозирования специального реагента необходим для связывания солей жёсткости, железа и тяжелых металлов, что предотвращает преждевременный выход мембраны из строя.

Накопительный бак (водяной аккумулятор) создает запас очищенной воды. Это целесообразно ввиду небольшой скорости фильтрации, которая в зависимости от типа мембраны составляет от 200 литров в сутки (около 140 мл/мин). Существует несколько типоразмеров водяных аккумуляторов, покупатели могут выбрать подходящий.

Что касается основного элемента системы, то «Гейзер» предлагает широкий промышленных установок обратного осмоса. Например, весьма популярна модель ГЕЙЗЕР RO1-4040.

Она крепится на раму из нержавеющей стали и включает в свой состав следующие основные элементы:

  • насос для создания давления с очень низким уровнем шума, что в частном загородном доме весьма актуально;

  • фильтр механической очистки с порогом отсева 5 мкм для лучшей сохранности мембраны;

  • собственно, обратноосмотическую мембрану в корпусе из нержавеющей стали;

  • линию рециркуляции для снижения расхода очищаемой воды;

  • устройство для автоматического заполнения мембраны чистой водой на время простоя, что увеличивает срок ее службы.

Системы обратного осмоса для дома становятся всё более популярными, сегодня это один из главенствующих трендов на рынке водоочистительного оборудования.

Обратный осмос | Промышленная водоподготовка и очистка сточных вод

Установка обратного осмосаСуть обратного осмоса заключается в фильтровании растворов под давлением, превышающем осмотическое, через полупроницаемые мембраны, пропускающие молекулы воды, но задерживающие молекулы или ионы растворенных низкомолекулярных веществ.

Отчего обратный осмос получил такое название?

Если отделить воду от водного раствора полупроницаемой мембраной, то вода будет самопроизвольно переходить в сторону раствора. Это обычный, или, как стали говорить в последние годы, прямой осмос:

прямой осмос

Если приложить к раствору давление, равное осмотическому, то наступает равновесие: сколько воды переходит слева направо, столько же и справа налево:

Осмотическое равновесие

Если давление, прилагаемое к раствору, больше осмотического, то будет происходить течение воды из раствора в сторону чистой воды, т.е. в направлении, обратном направлению течения воды в прямом осмосе:

Обратный осмос

Исходя из такой слегка упрощенной схемы следует, что движущей силой обратного осмоса является разница между приложенным гидростатическим давлением и осмотическим давлением раствора. В реальной практики фильтрации на мембранах обратного осмоса мы сталкиваемся с тем, что почти никогда мембраны не обладают идеальной полупроницаемостью, то есть не полностью задерживают молекулы и ионы растворенных веществ. К тому же, со стороны раствора возникает явление концентрационной поляризации, из-за которой концентрация растворенных веществ у поверхности мембраны больше, чем в объеме раствора. Наконец, давление со стороны воды может быть больше атмосферного из-за гидравлического сопротивления дренажного канала. Поэтому запись выражения для движущей силы обратного осмоса Δp принимает следующий вид:

движущая сила обратного осмоса

Здесь p – разность гидростатического давления над раствором и пермеатом, π3– осмотическое давление разделяемого раствора у поверхности мембраны, π2 – осмотическое давление пермеата, т.е. воды (с некоторой примесью растворенных веществ), перешедшей через мембрану.

Величину p называют рабочим давлением.

Для расчета движущей силы необходимо уметь правильно определять осмотическое давление.

Надежных методов расчета осмотических давлений многокомпонентных растворов нет. Однако в разбавленных растворах сильных электролитов без существенной погрешности можно считать осмотическое давление равным сумме осмотических давлений составляющих компонентов.

В практике обратного осмоса осмотические давления растворов варьируются от нескольких килопаскалей до нескольких мегапаскалей, а рабочее давление от десятков долей мегапаскаля до 5 – 7 МПа.

Несмотря на сравнительно высокие рабочие давления, обратный осмос оказывается энергетически выгоднее большинства других массообменных процессов и даже многокорпусного выпаривания.

Работу, необходимую для продавливания воды через мембрану, А, можно представить как произведение рабочего давления на объем прошедшей через мембрану воды V. Посмотрим, какова будет работа на продавливание 1м3воды при сравнительно высоком рабочем давлении 5 МПа:

Работа на продавливание воды в осмосе

это величина в (Дж).

Это – теоретическая работа продавливания. С учетом коэффициентов полезного действия насоса и двигателя, потерь энергии с отходящим концентратом, затрат на преодоление трения и местных сопротивлений в установке обратного осмоса реальный расход энергии составит (10-20)·106 Дж. Это на полтора порядка меньше, чем при выпаривании 1 м3 воды в многокорпусной выпарной установке с оптимальным числом корпусов.

Сравнительно малые затраты энергии в обратном осмосе объясняются тем, что разделение осуществляется без фазовых превращений и почти всегда при температуре окружающей среды. Последнее обстоятельство помимо экономии энергии на подогрев раствора обеспечивает еще одно важное достоинство – возможность разделения нетермостойких растворов.

Следует отметить и простоту конструкции установок обратного осмоса, которые включают только два основных элемента – мембранный аппарат и насос.

Исходный раствор подается насосом в напорный канал мембранного аппарата, где разделяется на два потока – прошедший через мембрану (пермеат, или фильтрат) и задержанный мембраной (ретант, или концентрат). Необходимое рабочее давление в системе поддерживается с помощью вентиля на линии концентрата и контролируется по манометру.

Промышленное значение обратный осмос приобрел в 60-х годах 20-го века, когда были созданы анизотропные ацетатцеллюлозные мембраны. Ацетатцеллюлозные мембраны для обратного осмоса состоят из активного слоя с порами размером порядка 15-25 Ǻ и толщиной в десятые доли микрона и крупнопористого подслоя толщиной порядка 100 мкм. Слои эти слиты в единое целое и между ними имеется переходная область. Активный слой контактирует с разделяемым раствором и обеспечивает селективные свойства мембраны, а толстый подслой придает мембране прочность, практически не оказывая гидравлического сопротивления потоку пермеата. Благодаря этому ацетатцеллюлозные мембраны характеризуются приемлемо высокими значениями селективности и удельной производительности.

Селективность выражается в долях единицы (или процентах) и характеризует долю (процент) растворенного вещества, задержанного мембраной.

Удельная производительность G выражается как количество жидкости, проходящей в единицу времени через единицу рабочей поверхности мембраны. При этом под рабочей поверхностью понимается поверхность, контактирующая с разделяемым раствором (часть общей поверхности мембран находится под герметизирующими прокладками или в области склейки мембранных элементов и не участвует в процессе обратного осмоса).

Удельная производительность обычно представляется в следующих размерностях:

[л/м2·час], [л/м2 ·сутки], [кг/м2 ·час].

Порядок величин в этих размерностях – десятки и сотни.

В системе СИ размерность G [м/с] или [кг/м2·с]. Здесь получаются величины малых порядков, поэтому чаще пользуются указанными выше внесистемными размерностями.

 

Сферы применения обратного осмоса:

1. Подготовка питьевой воды.

Наиболее распространен процесс получения питьевой воды из речной воды, пресных озер и водоемов. При этом обратный осмос проводится при невысоких давлениях, что делает его особенно экономичным.

Пока менее распространено получение питьевой воды из морских и океанических вод. Они имеют осмотическое давление порядка 2,5 МПа, поэтому рабочее давление должно быть 3 МПа и выше. К тому же, требуются высокоселективные (а значит – менее производительные) мембраны. Однако с ростом дефицита пресной воды способ получения питьевой воды из соленых вод непрерывно расширяется.

2. Получение воды повышенного качества.

Очень высокие требования предъявляются к воде, которая используется для промывки деталей при изготовлении изделий микроэлектроники, и к воде, направляемой в котлы, где производится водяной пар. Здесь обратный осмос находит широкое применение. В качестве исходной обычно берется вода из артезианских скважин или водопроводов.

3. Обработка сточных вод.

Обратный осмос применяется при обработке сточных вод в химической, пищевой, целлюлозно-бумажной, атомной и других отраслях промышленности. При этом одновременно происходит очистка воды до санитарных норм на сбрасываемую воду или пригодную для технических нужд и концентрирование ценных компонентов, часто содержащихся в сточных водах, что облегчает их утилизацию.

4. Концентрирование и фракционирование растворов.

Типичные примеры – это концентрирование фруктовых и овощных соков, молока и молочной сыворотки, концентрирование обработанных технологических растворов электролитов в химической промышленности, реактивов для повторного использования в фото- и кинопромышленности. Выделение отдельных компонентов из многокомпонентных растворов путем фракционирования.

Говоря о применении обратного осмоса, нельзя не упомянуть о том, что как единственно необходимый процесс он используется при решении ограниченного числа задач – например, при получении питьевой воды из природных вод, где концентрат может сбрасываться в тот же водоем, откуда забирается вода.

В большинстве же случаев наибольшая эффективность достигается при сочетании обратного осмоса с другими методами разделения. Так, при концентрировании растворов целесообразно бывает на первой стадии использовать обратный осмос, а окончательное концентрирование провести выпариванием. При получении особо чистой воды пермеат со стадии обратного осмоса обычно направляется на ионный обмен, где вода окончательно очищается от солей.

Выбор той или иной схемы разделения является задачей технико–экономического анализа. Важнейшей составляющей, необходимой для его выполнения, является знание теоретических основ обратного осмоса.

Почему не следует покупать установки обратного осмоса

Одним из самых современных способов очистки воды от примесей является обратный осмос. Это технология осуществляется при использовании обратноосмотической мембраны. Вода при обратном осмосе пропускается через мембрану, поры которой пропускают воду, но не пропускают растворенные в ней примеси.

Система обратного осмоса позволяет получать воду очень высокой степени очистки (близкую к дистиллированной). Фильтры обратного осмоса производят наиболее качественную (полноценную) очистку воды.

Из воды удаляются такие вредные вещества как магний, ртуть, нитраты, нитриты, стронций, мышьяк, свинец, сульфаты, железо, хлор, а также многие ( но не все), бактерии и вирусы.

К сожалению, обратный осмос удаляет из воды и более 20-ти полезных веществ: соли кальция, магния, натрия, фтора, и т д., крайне необходимые для здоровья человека ( в питьевой воде должно находиться, как минимум, 500 мг полезных солей ).Поэтому вода, очищенная обратным осмосом, является «мертвой», — очищенной, но не полезной для здоровья человека. Более того, такая вода является агрессивной и с легкостью вымывает из организма человека жизненно необходимые минералы, приводит инсультам и инфарктам.

Обратный осмос реализуется следующим образом. Полупроницаемая осмотическая мембрана препятствует выравниванию концентраций веществ по разные стороны от себя. Поток воды продавливается через мембрану, которая отторгает примеси, поддерживая их высокую концентрацию с той стороны, откуда течет вода.

Фильтр, работающий по принципу обратного осмоса, устроен достаточно просто: основной элемент, позволяющий получать воду высокой степени очистки — это тонкопленочная мембрана. Мембрана обратного осмоса представляет собой некое подобие сетки, размер ячеек которой сравним с размером молекулы воды. Благодаря такой структуре мембраны, из воды удаляются практически все растворенные компоненты, а также соли тяжелых металлов, органические примеси и бактерии. В процессе работы постепенно перед мембраной накапливаются отфильтрованные соли и различные примеси, из-за чего она может засориться и перестать работать. Для того чтоб этого не случилось, перед мембраной устанавливаются префильтры — несколько ступеней предварительной очистки. Среди них обязательно присутствует ступень очистки от механических загрязнений, задерживающая песок и нерастворимые примеси. Для постоянного слива этих «отходов» вдоль мембраны создается принудительный поток воды, смывающий сконцентрированные загрязнения в дренаж.

Стоит отметить, что обратный осмос заимствован из живой природы. Осмотическая регуляция лежит в основе обмена веществ всех организмов. Стенки клеток растений, животных и человека представляют собой естественную мембрану обратного осмоса, которая является частично проницаемой, поскольку она свободно пропускает молекулы воды, но не молекулы других веществ. Фильтрующая способность природной мембраны уникальна, она отделяет вещества от воды на молекулярном уровне и именно это позволяет любому живому организму существовать.

Благодаря ей, в каждую живую клетку поступают необходимые вещества и выводятся ненужные. Принцип обратного осмоса первоначально применялся ДЛЯ опреснения морской воды.

Однако способ очистки — обратный осмос имеет ряд минусов.

Во-первых, хотя обратноосмотические установки на первый взгляд не очень дороги, эксплуатационные расходы по их функционированию примерно на порядок выше эксплуатационных расходов других методов очистки воды (аэрации, ионного обмена, озонирования и т.д.). Расхожая фраза «посадить как наркомана на иглу», как нельзя точно отражает положение покупателя обратноосматической (мембранной) установки. Если в среднем стоимость 1 м куб московской водопроводной воды составляет 30 руб/м куб, то стоимость 1 м куб воды, очищенной на установке обратного осмоса, — около 300 руб м/куб.

Столь значительная величина эксплуатационных расходов определяется еще и тем, что для работы установки обратного осмоса, требуется круглосуточная работа весьма мощных насосов, которые прокачивают воду через весьма тонкие мембраны. Кроме этого, чем более грязнее вода на входе на мембранную установку, тем более чаще надо менять дорогостоящие мембраны, — тем значительнее возрастают эксплуатационные расходы.

Во-вторых, обратный осмос — это один из самых низкопроизводительных методов водоподготовки. Мембраны пропускают воду медленно, и имеют низкую производительность. Поэтому в ряде случаев этот метод требуют установки внушительной и дорогостоящей накопительной емкости из пищевой нержавеющей стали.

В-третьих, вода перед мембраной обратного осмоса должна обязательно пройти тщательную предварительную очистку на какой-либо установке с традиционной технологией очистки воды. По сути это означает увеличение первоначальной стоимости мембранной установки.

В — пятых, технология очистки воды обратным осмосом, по сути является самоедской: при работе системы обратного осмоса в дренаж сбрасывается до 75% очищаемой воды ( тогда как при традиционных методах очистки воды, — всего не более 5 %).. На выходе пользователь получает лишь 25-30% воды. Правда, воды очень хорошо очищенной. Но не полезной, а вредной для здоровья человека.

В — шестых, — метод обратного осмоса неизменно связан с использованием современных мембран. Для того, чтобы повысить эффективность обратноосмотических фильтров, • нередко применяются нанокристалы и специальные модификаторы. О безопасности подобных веществ споры в научном мире не прекращаются и по сей день.

В — седьмых, мембранные методы разделения не способны улавливать летучие органически вещества, размер молекул которых меньше диаметра молекул воды. Именно поэтому задержать частицы инсектицидов и гербицидов мембранные фильтры не могут. С другой стороны, обратноосмотические мембраны легко забиваются сульфатами бария, стронция, карбонатом кальция, диоксидом кремния и ферросоединениями, и требуют весьма частой замены.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *