Ремонт импульсных блоков питания – Ремонт импульсного блока питания — основные поломки и методы их устранения

Содержание

Импульсные блоки питания: ремонт за 7 шагов

Все современные электрические приборы, использующие цифровые технологии, питаются от встроенных блоков, работающих в импульсном режиме.

Они снабжаются защитами, имеют качественный монтаж, но из-за скачков напряжения в сети или ошибок человека все же выходят из строя: тогда дорогой бытовой помощник перестает работать.

Чтобы вы могли с минимальными потерями выйти из этой ситуации, я подробно объясняю все про импульсные блоки питания, ремонт своими руками их неисправностей.

Содержание статьи

Вначале предлагаю немного отойти от темы, чтобы вспомнить подсобный справочный материал. Если он вам не нужен, то сразу переходите к вопросам ремонта.

Импульсные блоки питания — как работают: краткий обзор схем

Структурная схема импульсного блока питания поясняется мнемоническими символами формы напряжения над каждым его составным блоком, а связи взаимодействия обозначены стрелками.

Структурная схема импульсного блока питания

Принципиальную схему удобно представлять таким видом.

Схема импульсного блока питания

Монтажная плата одного из устройств с расположением деталей показана на фотографии ниже с моими комментариями.

Импульсный блок питания

Естественно, что это только частный случай, который, скорее всего не совпадет с вашим ИБП. Здесь я преследую простую цель — напомнить принципы взаимодействия составных частей блока.

Если вам необходимо более подробно ознакомиться с этими вопросами, то читайте специально написанную статью.

Правила безопасности с электрическим током: как исключить риски и защититься от удара током при ремонте ИБП

На всех существующих схемах импульсных блоков питания рядом с первичными цепями 220 вольт расположены вторичные — выходного напряжения. Их все необходимо измерить и оценить.

Правила безопасности с электрическим током требуют не допускать необученных людей к работам под напряжением. Поэтому обязательно ознакомьтесь с ними заранее.

Я же заострю ваше внимание только на трех вопросах:

  1. Работайте под напряжением только одной рукой: вторую засуньте в карман и не доставайте — сразу снизите риск попадания под действие электрического тока.
  2. Накопительные конденсаторы длительно хранят запасенную энергию даже при отключенном напряжении, требуют осторожного обращения.
  3. Подключайте импульсный блок питания для проверок только через разделительный трансформатор.

Электрическое сопротивление человеческого тела очень низкое: наш организм состоит из жидкостей. Если работать под напряжением двумя руками, то существует большая вероятность создать путь для прохождения тока короткого замыкания через свое тело.

А ведь несколько десятков миллиампер уже могут вызвать фибрилляцию сердца.

Фибрилляция сердца

Мгновенный разряд конденсатора тоже способен причинить большой вред организму. Не советую испытывать судьбу: проверять на себе работу электрошокера.

Накопленный емкостной заряд следует предварительно снимать. Причем делать это не простой закороткой его выводов пинцетом или перемычкой, а резистивным сопротивлением в десятки килоом. Иначе могут возникнуть большие токи, которые элементарно повредят исправный конденсатор.

Разделительный трансформатор отделяет подключенный к нему потребитель от цепей питающей подстанции. Его применение исключает стекание тока через тело человека по контуру земли.

Величина тока короткого замыкания во вторичной цепи 220 разделительного трансформатора ограничивается мощностью, которую может передавать его магнитопровод.

Разделительный трансформатор

Эта схема подключения допускает касание одной рукой (не двумя) любого места вторичной обмотки трансформатора или подключенного к ней источника бесперебойного питания.

Подключать ИБП к вторичной цепи разделительного трансформатора рекомендую через лампу накаливания.

Ее же с мощностью 60-100 ватт допустимо использовать в качестве токоограничивающей нагрузки при ремонте блока без разделительного трансформатора. Она уменьшит аварийный ток, может спасти транзистор от выгорания.

Как отремонтировать импульсный блок питания своими руками: важные советы для начинающих

Профессиональный электрик всегда начинает работу с подготовки рабочего места, инструмента и оценки рисков, которые необходимо предотвратить.

Следует хорошо представлять, что ремонтировать импульсный блок питания своими руками — значит работать под напряжением в действующих цепях.

Подготовительные работы: где найти схему импульсного блока питания и какие нужны измерительные приборы

Сейчас производители электротехнического оборудования хранят в тайне свои профессиональные секреты: схемы ИБП в свободном доступе нет. Мы же собрались делать ремонт своими руками, а не в специализированном сервисе.

Поступаем следующим образом:

  1. Вскрываем корпус и осматриваем электронную плату.
  2. Находим мощный транзистор (выходной ключ) и микросхему (ШИМ-контроллер). Иногда они могут быть объединены общим корпусом.
  3. Записываем маркировку и по ней ищем в справочниках или через интернет полное описание (data sheet).
  4. Изучаем по найденной документации выводы микросхемы, способы ее подключения и сравниваем полученные сведения с реальной конструкцией.

На малогабаритных микросхемах полная маркировка не всегда помещается. Тогда производители делают кодовое обозначение из нескольких букв и цифр. По нему сложнее искать информацию, придется упорнее потрудиться.

Технологию поверхностного монтажа печатных плат и способы маркировки деталей хорошо объясняет в своем видеоролике Влад ЩЧ. Рекомендую посмотреть.

Без измерительного электрического инструмента отремонтировать ИБП вряд ли получится. Можно обойтись старыми стрелочными приборами — тестерами, как мой Ц4324.

Советский тестер

Они позволяют измерять большинство электрических параметров с достаточным для ремонта классом точности, но требуют повышенного внимания и выполнения дополнительных вычислений.

Сейчас намного удобнее использовать для замеров цифровой мультиметр.

Устройство мультиметра

Все правила обращения с ним для новичков я очень подробно объяснил в специально опубликованной статье. Надеюсь, что она будет вам полезна.

Большую помощь в поиске неисправностей окажет осциллограф. Он позволяет просмотреть осциллограммы напряжений практически каждого узла ИБП.

Частота напряжения

По их виду и величинам довольно просто оценивать работоспособность каждого электронного элемента в составе схемы. Для снятия замеров подойдет любая модель: старая аналоговая или современная цифровая.

Но, если осциллографа нет, то отчаиваться не стоит. В подавляющем большинстве случаев можно обойтись цифровым мультиметром или стрелочным тестером.

Алгоритм ремонта импульсного блока питания: полная инструкция из 7 последовательных шагов

Неисправности внутри ИБП можно разделить на две категории:

  1. Явное выгорание с обугливанием деталей, дорожек, взрывы конденсаторов.
  2. Тихая потеря работоспособности без проявления внешних повреждений.

Алгоритм ремонта импульсного блока питания состоит из двух последовательных этапов: вначале проводят первичные проверки без подачи напряжения, а затем — замеряют величины электрических характеристик.

Первый этап ремонта предусматривает обязательное выполнение шагов №1 и 2 только с отключенным питанием.

Шаг №1: внешний и внутренний осмотр

Первоначально вам придется вскрыть корпус и внимательно осмотреть его содержимое. Все, что вызывает сомнения, необходимо тщательно проверить.

Неисправности блока питания компьютера

Первый тип повреждения таит в себе ту опасность, что определить маркировку сгоревших деталей бывает сложно, а то и невозможно. На этом этапе ремонт может остановиться.

Сгоревший транзистор

Шаг №2: проверка входного напряжения

Во втором случае поиск места дефекта начинают с проверки наличия цепей питания 220 вольт. Часто возникает повреждение сетевого шнура или перегорание предохранителя.

Плавкая вставка предохранителя

Плавкая вставка предохранителя обычно перегорает от пробоя полупроводникового перехода диодов выпрямительного моста, транзисторных ключей или дефектов блока, управляющего дежурным режимом.

Все это надо проверить мультиметром: его переводят в режим омметра и замеряют состояние электрического сопротивления указанных цепочек, ищут обрыв, который необходимо устранить.

Сразу скажу, что не стоит успокаиваться, если обнаружили сгоревший предохранитель: он так просто не выходит из строя. Явно в цепи ИБП возникло короткое замыкание или перегруз: придется искать дополнительно поврежденные детали.

Если повреждений нет, то импульсный блок питания размещают на диэлектрическом основании стола и подают на него 220 вольт.

Входное напряжение надо проверить мультиметром в режиме вольтметра, провести измерения на входе сетевого фильтра и после плавкой вставки предохранителя.

Шаг №3: проверка состояния сетевого фильтра и выпрямителя

Работоспособность этой схемы следует определять вольтметром в режиме измерения переменного напряжения. Обращайте внимание на величину его сигнала на входе и выходе. У исправного прибора амплитуда гармоник практически не должна отличаться.

Качество фильтрации посторонних помех хорошо показывает осциллограф, но если он отсутствует, то это не так уж и страшно. Его замеры могут понадобиться в исключительных случаях, их допустимо пропустить.

Также проверяется работа выпрямителя: вольтметр для замера выходного напряжения переключают в режим цепей постоянного тока. Его концы устанавливают на ножки электролитического конденсатора или их дорожки.

Замер напряжения на конденсаторе

Когда напряжение на выходе из фильтра или выпрямителя не укладывается в норму, то придется проверять исправность всех деталей, которые входят в его схему.

В первую очередь обращайте внимание на электролитические конденсаторы, которые при излишнем нагреве усыхают, теряя емкость, а то и взрываются. Сразу оцените правильность их геометрической формы.

Вздутый конденсатор

Любое малейшее искажение, особенно вздутый конденсатор — признак внутреннего повреждения. Если геометрия не нарушена, то приступают к электрическим замерам.

Стрелочным тестером это можно сделать двумя способами:

  1. Конденсатор разряжают. Прибор переводят в режим омметра и его внутренним источником заряжают емкость: просто щупы ставят на ножки и выдерживают небольшое время.

Затем цешку переводят в режим вольтметра и наблюдают за разрядом емкости. Способ приблизительный, оценочный, но довольно быстрый.

  • Более точно, но сложнее оценить конденсатор можно измерением его емкостного сопротивления. Через него пропускают синусоидальный ток, оценивают замерами его величину и падение напряжения. По закону Ома вычисляют емкостное сопротивление Хс. По нему рассчитывают емкость конденсатора C.

Цифровой мультиметр позволяет просто определить величину емкости обычным замером. Внутри него уже есть встроенный генератор, а процессы измерения тока с напряжением, как и вычисления, автоматизированы.

Во вторую очередь анализируйте исправность диодов. Все они, включая силовые, должны проводить ток только в одну сторону. Их работоспособность оценивают мультиметром в режиме омметра или прозвонки.

Шаг №4: проверка работы инвертора

Учитываем, что схема построения каждого высокочастотного генератора собирается не только из различных деталей, но и с большим разнообразием конструкторских решений.

Часто генератор объединен в составе электронной платы с высокочастотным трансформатором, а также выходным выпрямителем и фильтром. Мы будем исходить из того, что точной схемы построения ИБП у нас нет: проверяем ее по внешним, косвенным признакам.

Работаем мультиметром в режиме вольтметра: последовательно оцениваем амплитуды напряжений на разных точках инверторной схемы. Учитываем, что прибор показывает действующие величины, а не максимальные, амплитудные.

Осциллограф с делителем напряжений здесь более уместен: он покажет еще и форму каждого сигнала, что может значительно облегчить поиск неисправности.

Шаг №5: проверка выходных напряжений

Обращаю внимание, что многие ИБП, особенно компьютерные, на выходе имеют несколько цепей, отличающихся по величине напряжения, например, 12, 5 и 3,3 вольта. Причем они могут собираться на разные нагрузки.

Разъемы компьютерного блока питания

Их все надо проверить электрическими замерами. Чтобы запустить компьютерный блок в работу необходимо закоротить управляющий сигнал запуска БП PS_On на нулевой провод черного цвета.

Подача напряжения питания на компьютерный ИБП в режиме холостого хода вредна для электронной схемы. Сокращается ресурс его работы.

Для проверки под напряжением рекомендуется собрать простую схему из обычных резисторов. Желательно их выбирать большой мощности и ставить на радиаторы или делать принудительный обдув на время проверки.

Блок нагрузки

Если в качестве нагрузки использовать рабочие блоки компьютера, например CD привод, HDD или материнскую плату, как иногда рекомендуют отдельные мастера, то велика вероятность того, что не устраненная еще неисправность блока питания повредит и их.

Шаг №6: проверка работы защиты от перегрузок

Операция проводится после проверки качества выходных напряжений на всех участках схемы.

Импульсные блоки питания для сложных электронных устройств (мониторы, цифровые телевизоры и подобная техника) имеют в своем составе токовую защиту. Она снимает питание с подключенной цепи при возникновении в ней опасных токов, превышающих номинальную величину.

Эта защита работает от встроенного датчика тока, сигнал с которого о перегрузке подается на управляющую микросхему. Она, в свою очередь, отключает питание выходным силовым контактом с создавшегося аварийного режима.

Тема эта очень большая, обширная. Принципы построения токовой защиты в импульсных блоках питания доступно объясняет владелец видеоролика Ростислав Михайлов.

Шаг №7: проверка схемы стабилизации выходных напряжений

На этом заключительном этапе оценивается работа блока управления инвертором при меняющемся входном напряжении питания по действию схемы обратной связи.

Алгоритм проверки состоит из следующих этапов:

  1. ИБП отключают от цепей входного напряжения 220 вольт.
  2. К выходу оптопары подключают стрелочный тестер, переключенный в режим омметра, хотя можно использовать и цифровой мультиметр.
  3. На выход блока питания +/-12 V подают постоянное напряжение от регулируемого источника, меняют его величину и контролируют срабатывание оптопары по показаниям омметра.

При пониженном напряжении оптопара будет иметь высокое электрическое сопротивление, а при достижении на схеме уровня 12 вольт ее выход откроется, и стрелка омметра резко снизит свои показания.

Такое срабатывание свидетельствует о совместной исправности стабилитрона, оптопары и схемы стабилизации.

Не помешает также отдельно проверить целостность силового транзистора. Но предварительно его необходимо выпаять из платы.

Если позволяют габариты блока, то его можно доработать заменой:

  • выпрямительных диодов повышенной мощности;
  • накопительных конденсаторов большей емкости и напряжения.

Такие простые действия продлят ресурс работы, на который рассчитан импульсный блок питания, а его ремонт своими руками принесет несомненную пользу владельцу. Если у вас возникнут вопросы по этой теме, то воспользуйтесь разделом комментариев. Я отвечу.

Ремонт импульсных блоков питания своими руками

Как исправить блоки питанияВ любой электронной системе, работающей от импульсного блока питания, наступает неприятный момент, когда приходится сталкиваться с проблемным выходом его из строя. К сожалению, импульсные радиоэлементы или блоки, как показывает практика, не столь долговечны, как того хотелось бы, поэтому требуют к себе более пристального внимания, а зачастую просто замены или ремонта.

В последнее время многие производители импульсных блоков питания решают вопрос ремонта или замены своего «детища» кардинально. Они просто делают монолитные импульсные блоки, не оставляя практически никаких вариантов начинающим радиолюбителям для их ремонта. Но если вы стали обладателем разборного импульсного блока питания, то в умелых руках и владея определёнными знаниями и элементарными навыками замены радиоэлементов, вы легко сможете самостоятельно продлить срок его службы.

Общие принципы работы импульсных блоков питания

Давайте сначала разберёмся с общим принципом работы любого импульсного блока питания. Тем более что основные рабочие функции и даже выходные напряжения для определённых моделей, которые необходимы для функционирования всей системы (будь то телевизор или другой вариант электронного устройства) у всех импульсников практически одинаковы. Различаются только индивидуальные схематические рисунки и соответственно применяемые радиоэлементы и их параметры. Но это уже не столь важно для понимания общего принципа его работы.

Для простых любителей или «чайников»: общий принцип работы импульсных блоков питания заключается в трансформации переменного напряжения, которое подаётся непосредственно из розетки 220 В в постоянные выходные напряжения для запуска и работы всех остальных блоков системы. Осуществляется такая трансформация с помощью соответствующих импульсных радиоэлементов. Основными из них являются импульсный трансформатор и транзистор, которые обеспечивают рабочее функционирование всех электропотоков. Для проведения ремонта нужно знать как запускается этот блок. А для начала проверить наличие входного рабочего напряжения, предохранитель, диодный мост и так далее.

Рабочий инструмент для проверки импульсных блоков питания

Как работает импульсный блок питанияДля ремонта импульсного блока питания, вам потребуется обычный, даже простенький мультиметр, который проверит постоянное и переменное напряжение. С помощью функций омметра, прозвонив сопротивления радиодеталей, вы также можете быстро проверить исправность предохранителей, дросселей, рабочее сопротивление резисторов, «бочонки» электролитических конденсаторов. А также транзисторные диодные переходы или диодные мосты и прочие виды радиоэлементов и их связи в любой электронной схеме (иногда даже не выпаивая их полностью).

Проверять импульсный блок сначала нужно в «холодном» режиме. В этом случае прозваниваются все визуально подозрительные (вздувшиеся или горелые радиодетали), которые поддаются «холодной» проверке без подачи рабочего напряжения. Визуально испорченные радиодетали следует немедленно заменить на новые. Если облезла маркировка воспользуйтесь принципиальной схемой или найдите соответствующий вариант в интернете.

Замену производить нужно только с разрешающим допуском по определённым параметрам, который вы можете найти для любого радиоэлемента в специализированной литературе или в прилагающейся к прибору схеме. Это безопасный метод, потому что импульсные блоки питания очень коварны своими электрическими разрядами.

Не забывайте и то, что при обнаружении нерабочего радиоэлемента, нужно проверить соседние с ним детали. Зачастую резкие перепады напряжения при сгорании одного элемента, влекут за собой выход из строя соседних. В процессе практической деятельности по ремонту определённых моделей вы будете логически вычислять неисправность исходя из результата состояния ремонтируемого объекта. К примеру, даже по определённому запаху (запах тухлых яиц при выходе из строя электролита), при включении по монотонному звуку или треску в процессе работы блока и прочих дефектах, которые могут возникнуть в процессе работы любого электронного прибора.

В рабочем режиме проверка импульсного блока питания возможна только при нагрузке всей системы – не вздумайте отключить нагрузочные шины телевизора при проверке. Можно создать нагрузку искусственным путём с помощью подключения специально собранного нагрузочного эквивалента.

Основные неисправности и методы проверки импульсных блоков питания

Как включить и выставить определённый режим мультиметра каждый может разобраться сам, даже школьник. Перед началом проверки убедитесь в работоспособности сетевого кабеля или выключателя, которые можно определить визуально или с помощью мультиметра. Не забудьте при любой проверке разрядить электролитические конденсаторы. Они накапливают и удерживают довольно приличный заряд на протяжении определённого времени, даже после выключения всей системы.

  1. Частые поломки импульсных блоков питанияДля этого закоротите контакт любого электролита, а лучше пройдитесь по всей плате изолированным щупом (с номинальным сопротивлением несколько кОм и мощностью больше 0,5 Вт), который другим концом будет подсоединён к заземлению. Старайтесь заземлять только точечные контакты, не прикасаясь одновременно к двум, иначе можете испортить радиодетали. Иногда таким способом вы сможете убрать «коротыш». Это короткое замыкание в схеме, которое может возникнуть при выходе из строя некоторых элементов блока питания.
  2. Как уже говорилось выше все вздувшиеся и чёрные радиоэлементы нужно сразу заменить на подобные, но не спешите после этого сразу опробовать весь блок. Прозвоните соседние детали и при необходимости замените их.
  3. Прозвонить силовые и выпрямительные мосты (при необходимости выпаять), обычно они выполнены на диодах, которые проверяются омметром и имеют односторонний переход. Для проверки подключите щупы мультиметра ко входу и выходу диода (сначала чёрный щуп к одному контакту, а красный к другому, а затем меняя местами), вы должны убедиться, что он не пробит. То есть, вы должны увидеть определённое числовое показание мультиметра, когда подключите щупы в правильном направлении плюс и минус. Единица будет означать исправность перехода в обратном направлении (т. е. непробитый переход). Таким способом нужно проверить все сомнительные детали с диодными переходами.

Возможные причины выхода из строя импульсного блока питания и необходимая замена нерабочих радиоэлементов:

  1. При сгорании предохранителя весь блок обесточивается. Заменить перегоревший контакт очень просто. Используйте обычный проволочный волосок, который наматывается поверх предохранителя или припаивается непосредственно к его контактам. Необходимо учитывать толщину волоска, которая рассчитана на определённую силу тока. Иначе вы рискуете в последующем вывести из строя весь импульсный блок, если предохранитель не сработает.
  2. Если полностью отсутствует выходное напряжение, возможно, неисправен соответствующий конденсатор или дроссель, который нужно заменить или поменять обмотку. Для этого нужно размотать повреждённый провод и намотать новый с соответственным количеством витков и подходящим сечением. После чего самодельный дроссель впаивается на своё рабочее место.
  3. Проверить все диодные мосты и переходы. Как это сделать описано выше. Не забывайте при установке новых деталей производить самостоятельную, а главное, качественную пайку.

Самостоятельная и качественная пайка

  1. Как самим отремонтировать блок питанияПредметы первой необходимости при ремонте это паяльник, канифоль и «отсос». Отсос – механический (или электрический) прибор, который применяется во время выпаивания элементов и служит для предотвращения перегрева во время пайки. Принцип его работы заключается в резком втягивании в себя расплавленного олова, которое при сильном нагреве может вывести радиоэлемент из строя. Особенно это касается интегральных микросхем, которые очень чувствительны к таким температурным скачкам. Отсосы бывают механические и электрические. Хорошо и правильно подобранный по мощности паяльник в сочетании с отсосом являются отличным тандемом для качественной пайки.
  2. Для выпаивания и обратной установки необходимых радиоэлементов можно пользоваться не только паяльником и отсосом, но и термовоздушной паяльной станцией. Её несложно соорудить и самому. Обычный вентилятор можно использовать в качестве нагнетателя, а спираль буде нагревающим элементом. Схема на тиристоре будет оптимальным вариантом для регулировки температуры. Такая станция ещё удобна и для прогрева всех подозрительных и некачественных паек, которые могут стать причиной появления микротрещин, и как результат – плохого контакта.

Правильная и качественная пайка является одним из основополагающих навыков, которым должен овладеть любой начинающий радиолюбитель. От этого зависит конечный результат всего ремонта и срок дальнейшей эксплуатации отремонтированного прибора.

Основные этапы ремонта импульсных блоков питания

  1. Самостоятельный ремон блока питанияНесмотря на то что практически все импульсные блоки питания работают почти по одному принципу, схематические схемы для разных моделей электроприборов могут существенно различаться. Поэтому прежде чем приступить к ремонту постарайтесь найти электрическую принципиальную схему именно на тот объект, который собираетесь ремонтировать. Это поможет и для замеров конкретных рабочих напряжений в определённых точках, чтобы быстрее понять и найти неисправный элемент в цепи.
  2. Как бы теоретически вы ни были подкованы в этой области, без практических навыков вам не обойтись. Элементарные знания и практическое использование мультиметра или осциллографа, а также практические навыки по замене радиоэлементов с помощью паяльника и припоя вам просто необходимы в процессе ремонта.
  3. Если первые два этапа выполнены и вы готовы начать – разберите и почистите устройство с помощью пылесоса и произведите визуальную проверку блока (обратите внимание на вздутые конденсаторы, гарь и прочие механические дефекты).
  4. Проверьте электроприборами соответствие рабочих напряжений согласно схеме или просто подозрительные радиоэлементы. Осциллографом определите соответствие необходимых пульсаций в контрольных точках. После этого делайте выводы и производите необходимые замены.

Возможные неисправности типовых импульсных блоков питания на примере телевизора или компьютера:

  • Импульсный блок питанияЕсли нет свечения светодиода дежурного режима телевизора, прозвоните сетевой шнур и предохранитель блока питания. Когда они в порядке проверьте дальше выпрямительный мост, транзисторы, стабилитроны и выходные напряжения микросхемы. Не забудьте устранить возможные «коротыши». А также можете пойти от обратного. Для этого замерьте выходные напряжения, которые должны подаваться на остальные блоки и если найдёте несоответствие – проверяйте всю цепочку в обратном порядке. Включайте при этом не только измерительные приборы, но и свою логику. Для этого, конечно, нужны теоретические знания работы тока в конкретном блоке. Но если вы имеете представление хотя бы о простых законах Ома – сделать это будет несложно.
  • Для ремонта компьютерного блока питания можно начать с обычных первоначальных проверок любого электроблока. Маленькое отступление и совет: убедитесь в точности своей диагностики. Если вы неуверены в правильности своих выводов по поводу неисправности того или иного блока – просто замените его на заведомо исправный. Если замена устранила дефект или сделала работоспособной систему, значит, вы не ошиблись и можете смело приступать к ремонту заменяемого блока. Для этого проверяются все предохранители и диодные переходы. Проверка обмоток трансформатора тоже будет не лишней. Запомните одно, и это, главное. Даже если вы не имеете понятия о процессах, происходящих, в радиоэлементах под воздействием разного тока, научитесь просто читать электрическую схему и по ней измерять и сравнивать нужные напряжения и делать логические выводы. Это как разгадывание кроссворда – занимательно и интересно.

Неисправности импульсных блоков питания на 12 вольт

Сложность замены любого импульсного блока питания на 12 В заключается в поиске нужной модели, а они очень многообразны. Поэтому найти такой блок с нужным выходным напряжением и силой тока не всегда представляется возможным, если он быстро понадобился. Иногда проще, при незначительной поломке, восстановить его работоспособность самому. Вот некоторые советы для этого:

  • Ремонт блока питанияЕсли полностью пропало выходное напряжение нужно вскрыть корпус и проверить электролитический конденсатор со средней ёмкостью до 70 мкФ. При выходе его из строя он обычно вспучивается, хотя дополнительно можно проверить и мультиметром.
  • Также проверяется предохранитель и выпрямительный мост, который часто выходит из строя при сетевых перегрузках.
  • После замены неисправных радиодеталей проверьте соседние, которые могли пострадать от большого выхода энергии сгоревших деталей.

Надеемся, эта статья дала общее представление об устройстве импульсных блоков питания. А, возможно, даже и заинтересовала многих начинающих радиолюбителей, которые хотят повысить свои профессиональные навыки.

Ремонт импульсного блока питания: определяем поломку

 

В наше время практически все электроприборы бытового назначения имеют специальные приспособления, именуемые импульсными блоками. Они могут иметь вид как отдельного модуля, так и платы, размещенной в конструкции прибора.

Внешний вид блока питания

Импульсный блок питания

Поскольку импульсные блоки предназначены для выпрямления и понижения сетевого напряжения, то они могут часто выходить из строя. Поэтому, чтобы не покупать новое дорогостоящее бытовое устройство, знания о том, как его можно починить своими руками будут достаточно востребованными. О том, как выявить неисправности работы данного прибора или платы, а также как самостоятельно провести его ремонт, вам расскажет данная статья.

Описание преобразователя напряжения

Импульсный блок питания может иметь вид платы или самостоятельного выносного модуля. Он предназначен, как уже говорилось, для понижения и выпрямление сетевого напряжения. Его необходимость основывается на том, что в стандартной сети питания имеется напряжение в 220 вольт, а для работы многих бытовых приборов необходимо гораздо меньшее значение этого параметра.
Сегодня, вместо стандартных понижающе-выпрямительных схем, собранных на основе диодного моста и силового трансформатора, используются блоки питания импульсного преобразования напряжения.

Обратите внимание! Несмотря на наличие высокой схемотехнической надежности, импульсные блоки питания часто ломаются. Поэтому в наше время очень актуален ремонт этих элементов электросхем.

Схематическое устройство импульсного блока питания

Схема импульсного блока питания

Все типы источника питания импульсного вида (встроенного или вынесенного за пределы прибора) имеют два функциональных блока:

  • высоковольтный. В таком блоке питания происходит преобразование сетевого напряжения в постоянное при помощи диодного моста. Причем напряжение сглаживается до уровня 300,0…310,0 вольт на конденсаторе. В результате происходит преобразование высокого напряжения в импульсное с частотой 10,0…100,0 килогерц;

Обратите внимание! Такое устройство высоковольтного блока позволило отказаться от низкочастотных массивных понижающих трансформаторов.

  • низковольтный. Здесь же происходит понижение импульсного напряжения не необходимого уровня. При этом напряжение сглаживается и стабилизируется.

В результате такого строения на выходе из блока питания импульсного типа функционирования наблюдается несколько или одно напряжение, которое нужно для питания бытовой техники.
Стоит отметить низковольтный блок может содержать разнообразные управляющие схемы, повышающие надежность прибора.

Внешний вид основной платы блока питания

Импульсный блок питания (плата). Цвета приведены на схеме

Поскольку блоки питания такого типа имеют сложное устройство, их правильный ремонт, проводимый своими руками, должен опираться на некоторые знания в электронике.
Осуществляя ремонт данного прибора, не стоит забывать, что некоторые его элементы могут находиться под сетевым напряжением. В связи с этим даже проводя первичный осмотр блока необходимо соблюдать предельную осторожность.
Ремонт в большинстве случаев не будет вызывать осложнений, т.к. импульсные блоки питания имеют типовое устройство. Поэтому и неисправности у них тоже будут схожими, а ремонт своими руками выглядит вполне посильной задачей.

Возможные причины поломки

Неисправности, которые приводят импульсный блок питания в нерабочее состояние, могут появляться по самым разнообразным причинам. Наиболее часто поломки происходят из-за:

  • наличия колебания сетевого напряжения. К неисправности могут привести те колебания, на которые не рассчитаны данные понижающе-выпрямительные модули;
  • подключение к блоку питания нагрузок, на которые бытовые приборы не рассчитаны;
  • отсутствие защиты. Не устанавливая защиту, некоторые производители просто экономят. При обнаружении такой неполадки нужно просто установить защиту в конкретное место, где она и должна находиться;
  • несоблюдение правил и рекомендаций эксплуатации, которые указаны производителями для конкретных моделей.

При этом в последнее время частой причиной поломки преобразователей напряжения является заводской брак или использование при сборке некачественных деталей. Поэтому, если вы хотите, чтобы ваш купленный импульсный блок питания проработал как можно дольше, не стоит покупать его в сомнительных местах и не у проверенных людей. Иначе это могут быть просто впустую потраченные деньги.
После диагностики блока зачастую выясняются следующие неисправности:

  • 40% случаев – нарушение работы высоковольтной части. Об этом свидетельствует перегорание диодного моста, а также поломка фильтрующего конденсатора;
  • 30% — пробоем биполярного (формирующего импульсы высокой частоты и располагающегося в высоковольтной части устройства) или силового полевого транзистора;
  • 15% — пробой диодного моста в его низковольтной части;
Внешний вид диодного моста

Диодный мост

  • редко встречается выгорание (пробой) обмоток дросселя на выходном фильтре.

Все остальные поломки можно будет определить только специальным оборудованием, которое вряд ли хранится дома у среднестатистического человека. Для более глубокой и точной проверки необходим цифровой вольтметр и осциллограф. Поэтому если поломки не кроются в четырех приведенных выше вариантах, то в домашних условиях блок питания такого типа вы не сможете починить.
Как видим, ремонт, проводимый в данной ситуации своими руками, может иметь самый разнообразный вид. Поэтому, если у вас перестал работать компьютер или телевизор по причине поломки блока питания, то не нужно бежать в ремонтную службы, а можно попутаться решить проблему своими силами. При этом домашний ремонт обойдется значительно в меньшую стоимость. А вот если вы не сможете своими силами справиться с поставленной задачей, тогда можно уже идти на поклон к специалистам из ремонтной службы.

Алгоритм определения поломки

Любой ремонт всегда начинается с выяснения причины неисправности блока питания импульсного.

Обратите внимание! Для ремонта и поиска неисправностей импульсного блока питания вам потребуется вольтметр.

Необходимый инструмент для диагностики и ремонта

Вольтметр

 

Для того чтобы ее выявить, необходимо придерживаться следующего алгоритма:

  • разбираем блок питания;
  • с помощью вольтметра измеряем напряжение, которое имеется на электролитическом конденсаторе;
Измеряем напряжение на конденсаторе

Измерение напряжение на электролитическом конденсаторе

  • если вольтметр выдает напряжение в 300 В, то это означает, что предохранитель и все элементы электросети (кабель питания, сетевой фильтр входные дроссели), связанные с ним работают нормально;
  • в моделях с двумя конденсаторами небольших размеров напряжение, свидетельствующее об их исправности, которое выдает вольтметр, должно составить 150 В для каждого прибора;
  • если же напряжение отсутствует, тогда необходимо провести прозвонку диодов выпрямительного моста, предохранителя и конденсатора;

Обратите внимание! Самыми коварными элементами в электросхеме блока питания импульсного типа работы являются предохранители. Об их поломке не свидетельствуют никакие внешние признаки. Только прозвонка поможет вам выявить их неисправность. В случае сгорания они выдадут высокое сопротивление.

Внешний вид предохранителей блока питания

Предохранители импульсного блока питания

  • если была обнаружена неисправность предохранителей, то нужно проверять остальные элементы электросхемы, так как они редко когда сгорают в одиночку;
  • внешне достаточно легко выявить испорченный конденсатор. Обычно он вздувается или разрушается. Ремонт в данном случае будет заключаться в его выпаивании и замене на работоспособный.
  • Обязательно необходимо прозвонить на предмет исправности следующие элементы:
  • выпрямительный или силовой мост. Он имеет вид монолитного блока или организован из четырёх диодов;
Внешний вид силового моста

Силовой мост импульсного БП

  • конденсатор фильтра. Может выглядеть как один или несколько блоков, которые соединяются между собой последовательно или параллельно. Обычно конденсатор фильтра расположен высоковольтной части блока;
  • транзисторы, размещенные на радиаторе.

Обратите внимания! Проводя ремонт, нужно найти сразу все неисправные детали импульсного блока питания, так как их выпаивание и замену следует проводить одновременно! В противном случае замена одного элемента будет приводить к выгоранию силовой части.

Особенности ремонтных работ и инструменты для них

Для стандартного типа устройств вышеперечисленные этапы диагностики и проведения ремонтных работ будут идентичными. Это связано с тем, что все они имеют типовое строение.

 

Процесс припайки элементов к плате

Припаивание деталей к плате

Также, чтобы провести качественный самостоятельный ремонт импульсного преобразователя напряжения, необходим хороший паяльник, а также умение управляться с ним. При этом вам еще понадобиться припой, спирт, который можно заменить на очищенный бензин, и флюс.
Помимо паяльника в ремонте обязательно понадобятся следующие инструменты:

  • набор отверток;
  • пинцет;
  • бытовой мультиметр или вольтметр;
  • лампа накаливания. Может использовать в качестве балластной нагрузки.

С таким набором инструментов простой ремонт будет по силам любому человеку.

Проведение ремонтных работ

Собираясь своими руками починить испортившийся импульсный преобразователь напряжения, необходимо понимать, что такие манипуляции не проводятся для изделий, предназначенные для комплексной замены. Они не рассчитаны на ремонт и их не возьмется чинить ни один мастер, так как здесь нужен полный демонтаж электронной начинки и замены ее на новую работающую.

Внешний вид платы импульсного блока питания

Плата блок питания импульсного принципа работы

Во всех остальных случаях ремонт в домашних условиях и своими руками вполне возможен.
Правильно проведенная диагностика является половиной ремонта. Неисправности, связанные с высоковольтной части обнаружатся легко как визуально, так и при помощи вольтметра. А вот неисправность предохранителя можно выявить при отсутствии напряжения на участке после него.
При обнаружении с ее помощью неисправностей остается просто произвести их одновременную замену. Осуществляя ремонтные работы, необходимо обязательно опираться на внешний вид электронной платы. Иногда, чтобы проверить каждую деталь, необходимо ее выпаять и протестировать мультиметром. Желательно проводить проверку всех деталей. Несмотря на затруднительность такого процесса, он позволит выявить все испорченные элементы электросхемы и вовремя их заменить, чтобы предотвратить перегорания прибора в обозримом будущем.

Замена элемента на плате

Замена перегоревших деталей

После того, как была проведена замена всех перегоревших деталей, необходимо установить уже новый предохранитель и проверить отремонтированный блок питания, включив его. Обычно, если все было выполнено правильно, а также соблюдены все нормы и предписания ремонтных работ, преобразователь заработает.

Заключение

Ремонт блока питания, работающего по импульсному принципу, можно вполне реализовать своими руками. Но для этого нужно правильно провести диагностику прибора, а также одновременно заменить все сгоревшие детали электросхемы. Выполняя все рекомендации, вы легко сможете провести необходимые ремонтные действия у себя дома.

 

как отремонтировать БП телевизора, компьютера

Фото 1

Компьютеры, современные телевизоры и некоторые другие приборы подключаются к электрической сети через импульсный блок питания.

И нередко причина их неработоспособности кроется в поломке именно этого компонента.

В ряде случаев может потребоваться ремонт импульсных блоков питания своими руками, и если пользователь владеет хотя бы основами радиолюбительства, справится с повреждением самостоятельно.

Основные неисправности

Импульсный БП отличается от обычного трансформатора с выпрямителем, наличием инвертора — схемы, увеличивающей частоту переменного тока с 50 Гц до десятков кГц. При такой частоте значительно уменьшаются размеры рабочего узла, потому импульсный блок компактнее и легче своего предшественника.

Состоит импульсный блок из таких компонентов:

Фото 2

  1. выпрямитель (диодный мост) с конденсатором для сглаживания пульсаций. Преобразует сетевой переменный ток в однонаправленный. Почти в половине случаев причина поломки кроется здесь — пробит диод либо раздулся конденсатор;
  2. инвертор. Состоит из быстро переключающихся ключевых транзисторов и управляющей ими микросхемы. Здесь выпрямленный постоянный ток снова превращается в переменный, но уже с частотой порядка 80 кГц. Ключевые транзисторы — слабое место. Примерно третья часть поломок обусловлена перегоранием одного из них;
  3. импульсный трансформатор. Преобразует высокое сетевое напряжение в низкое, необходимое для работы прибора;
  4. выпрямитель со сглаживающим фильтром. Также представляет собой диодный мост, но используются особые быстро открывающиеся диоды (из-за высокой частоты тока на входе). Преобразует высокочастотный переменный ток в постоянный и подает его на прибор. Работает при низком напряжении, потому выходит из строя значительно реже — примерно в 15% случаев.

Пульсации сглаживаются выходным фильтром, состоящим из дросселя и конденсатора. В редких случаях в катушке происходит межвитковое замыкание либо он перегорает.

Ремонтопригодны только БП дискретной сборки — у них каждую радиодеталь можно выпаять и проверить на работоспособность. В противоположность им существуют монолитные БП со схемой, залитой компаундом. Такие устройства не ремонтируют даже в мастерских, они подлежат замене.

Измерительные приборы и инструмент

В процессе ремонта понадобятся:

Фото 3

  • паяльник: предпочтительна модель с регулировкой мощности;
  • мультиметр;
  • осциллограф: существенно расширяет возможности мастера в поиске причин неисправности;
  • оловоотсос: инструмент, посредством которого удаляют расплав припоя;
  • отвертки;
  • кусачки;
  • пинцет;
  • лампа накаливания мощностью 100 – 150 Вт.

Применяются материалы:

  • припой;
  • флюс;
  • спирт или очищенный бензин для обезжиривания контактов.

Поиск неисправностей

Первым делом прозванивается сетевой шнур. И только потом, если он в порядке, разбирают электрический адаптер. Диагностику начинают с осмотра платы. Вышедшие из строя радиодетали зачастую распознаются по внешнему виду. Конденсаторы — вздуты либо вскрыты в верхней части, возможно вытекание жидкости из корпуса. Перегоревшие резисторы и диоды могут почернеть.

Фото 4Также осматривают места пайки, особенно контакты первичной катушки импульсного трансформатора. Если визуально повреждение не обнаруживается, включают блок в сеть и последовательно проверяют наличие напряжения в разных частях схемы, двигаясь от предохранителя к низковольтному выпрямителю.

Сторона первого определяется по подходящему к ней сетевому шнуру, тогда как от второго идут соединительные провода к аппаратуре.

Токоведущие части включенного в сеть блока находятся под высоким напряжением. Работы ведут с предельной осторожностью, соблюдая правила техники безопасности. Если, например, после предохранителя напряжение обнаруживается, а после входного выпрямителя — нет, значит последний неисправен. Его диоды выпаивают и прозванивают мультиметром.

Найдя дефектный, не ограничиваются его заменой, а сначала проверяют все остальные. Если какой-то из них также поврежден, и его оставить без замены, то новая радиодеталь при включении БП может сгореть. Конденсатор удобно проверять при помощи специальной функции мультиметра (имеется не у всех). При ее отсутствии применяют другие способы.

Фото 5Например, включают прибор в режиме измерения сопротивления, касаются щупами выводов конденсатора и засекают время до полной зарядки (показания на экране вырастут до «бесконечности»).

Затем сравнивают результат с аналогичным показателем зарядки заведомо исправного такого же конденсатора. Если в высоковольтной части БП напряжение имеется, но на выходе его нет — причину неисправности ищут в низковольтном выпрямителе или его LC-фильтре.

Конденсаторы и диоды проверяют по описанной схеме, а дроссель LC-фильтра прозванивают.

В некоторых мультиметрах имеется и функция определения параметров транзистора.

Ремонт стандартных устройств

Задача по восстановлению работоспособности БП телевизора или компьютера упрощается тем, что по своей схеме эти устройства однотипны. Отличия заключаются только в параметрах — номинале радиодеталей и выходной мощности. Соответственно, к таким БП применим один и тот же алгоритм поиска неисправностей и их устранения. Далее он подробно рассматривается.

Ремонт БП телевизора

Перед ремонтом телевизионного БП полезно обзавестись его схемой. Принцип работы у этих БП тот же, что и у любого другого. Но он производит несколько выходных напряжений, отчего процесс диагностики немного усложняется.

Фото 6

Схема импульсного источника питания телевизора

Еще одна трудность — наличие нескольких систем защиты при отклонениях Uвых. от нормы. Из-за них, симптомы многих поломок выглядят однообразно: БП вообще не подает признаков работоспособности.

Сегодня схему БП практически любого телевизора можно найти в интернете. На поломку блока питания указывает неработоспособность светодиода, обычно работающего в режиме ожидания. Если же он горит, причину ищут в другом.

В рамках диагностики проверяют следующие элементы:

  1. предохранитель. Если за ним напряжение отсутствует, деталь меняют;
  2. балластные сопротивления. Их обрыв — возможная причина неисправности;
  3. сглаживающие конденсаторы высоковольтного и низковольтного выпрямителей. Возможен пробой;
  4. дроссель LC-фильтра низковольтного выпрямителя. Возможны обрыв и межвитковое замыкание. Если данная модель БП встречается редко, и найти аналогичный дроссель в продаже не удается, его перематывают самостоятельно из провода того же сечения. Важно соблюсти правильное количество витков;
  5. диоды выпрямителей. Чаще выходят из строя полупроводники высоковольтного преобразователя, поскольку они работают под высоким напряжением. В отличие от перечисленных выше радиодеталей, диоды для диагностики приходится выпаивать.

Проверить на работоспособность микросхему инвертора в домашних условиях нельзя. О ее неисправности судят по косвенным признакам: если нормальное состояние всех прочих элементов подтверждено, а БП все равно не работает.

Если предохранитель цел, проверяют напряжение на выходе высоковольтного выпрямителя, интересуют параметры:

  • значение;
  • амплитуда пульсаций (определяется осциллографом).

Нормальное показатели — от 280 до 320 В. При низких значениях проверяют диоды. Высокая амплитуда пульсаций свидетельствует о неисправности сглаживающего конденсатора или обрыве выпрямителя.

Фото 7Если напряжение в норме, проверяют характер неисправности, возможны два варианта:

  1. БП вообще не включается;
  2. пытается включиться, но отключается системой блокировки (реагирует на заниженное или повышенное выходное напряжение).

Снова применяют осциллограф. Его вход подсоединяют к выводу ключевого транзистора инвертора, подключенного к первичной обмотке трансформатора.

Заземляют прибор на «горячую землю» БП. Если при включении телевизора кнопкой питания на осциллографе появляется серия импульсов, это свидетельствует о попытках запуска. Значит, устройство блокируется одной из защит, например, от превышения анодного напряжения на кинескопе. Это помогает сузить круг поиска неисправности.

Если БП не пытается включиться, проверяют элементы инвертора. Например, замеряют напряжение на коллекторе ключевого транзистора. Оно должно быть таким же, что и на сглаживающем конденсаторе высоковольтного выпрямителя.

Отсутствие напряжения свидетельствует об обрыве первичной обмотки импульсного трансформатора. Заменив поврежденные радиодетали, продолжают проверку БП, включив вместо предохранителя лампочку накаливания мощностью 100 – 150 Вт.

При активации кнопки питания на телевизоре, лампочка ведет себя в соответствии с неисправностью адаптера:

Фото 8

  1. вспыхивает и сразу гаснет, диод режима ожидания светится, на экране виден растр. Требуется проверка напряжения строчной развертки. Если оно завышено, проверяют и при необходимости меняют конденсаторы и оптронные пары;
  2. зажглась и потухла, но светодиод не горит, и решетки на экране нет. Это свидетельствует о неработоспособности инвертора. Проверяют напряжение на сглаживающем конденсаторе высоковольтного выпрямителя. При заниженном значении, как уже говорилось, требуется проверка диодов и данного конденсатора;
  3. горит особенно ярко. В этом случае БП сразу отключают от сети и еще раз проверяют работоспособность всех элементов.

Ремонт БП компьютера

Признаки неисправности компьютерного БП:

  • ПК вообще не подает свойств работоспособности;
  • включается, но сразу после этого многократно перезапускается;
  • не вращается вентилятор в БП.

Сняв с блока крышку и очистив плату щеточкой от пыли, ее подвергают осмотру. При отсутствии внешних повреждений, проверяют на целостность предохранитель. Если перегорел, вместо него включают лампу мощностью 100 Вт и нажимают пусковую кнопку компьютера. Засветившаяся лампа свидетельствует о неисправности высоковольтного выпрямителя либо его сглаживающего конденсатора.

При исправном предохранителе проверяют:

  1. транзисторы инвертора;
  2. ШИМ-контроллер.

При поломке одного из этих элементов, экономически целесообразнее купить новый БП. Причиной постоянных попыток перезапуска чаще всего является отказ стабилизатора опорного напряжения.

Видео по теме

О диагностике и ремонте импульсного блока питания в видео:

В данной статье упомянуты лишь основные из возможных неисправностей электрических адаптеров. Полный перечень вместе с инструкцией по ремонту занял бы объем брошюры. Но в подавляющем большинстве, происходит именно одна из перечисленных поломок. Так что пользователь имеет хорошие шансы вернуть БП в работу без обращения в мастерскую.

Ремонт импульсного блока питания своими руками

импульсный блок питания

В зависимости от причин и видов возникших поломок, могут потребоваться различные виды инструментов, обязательно необходимо иметь:

  • набор отверток с различными типами рабочих наконечников и размерами;
  • изоляционная лента;
  • пассатижи;
  • нож с острым лезвием;
  • паяльный аппарат, припой и флюс;
  • оплетка, предназначенная для удаления ненужного припоя;
  • тестер или мультиметр;
  • пинцет;
  • кусачки;

В наиболее сложных случаях, когда не удается установить точную причину неполадок, может понадобиться осциллограф.

Ремонт основных неисправностей

импульсный блок питанияПосле осуществления диагностики, и выявления причин некорректной работы импульсного блока питания, можно приступать к его ремонту:

  1. Скопившуюся внутри блока питания пыль можно просто устранить при помощи обычного бытового пылесоса.
  2. Если причина была в неисправном предохранителе, то необходимо приобрести новую деталь, которая имеется во всех соответствующих в магазинах. После этого, осуществляется удаление старого элемента и пайка нового предохранителя. Если эта последовательность действий не помогла, и блок питания так и не заработал, то остается отдать его в мастерскую для диагностики при помощи профессиональных видов оборудования, либо просто приобрести новое устройство.
  3. Если проблема была в конденсаторах или диодах, то неисправность исправляется по такому же алгоритму: приобретаются новые детали и впаиваются в схему вместо старых элементов.
  4. Если проблема неисправности заключалась в дросселе, то его заменять необязательно, поскольку этот элемент можно починить по довольно легкой методике. Дроссель извлекается из блока питания, после чего его потребуется разобрать и начать сматывать обгоревший провод, при этом, важно внимательно считать сматываемые витки. Затем необходимо подобрать аналогичный провод с равным диаметром и намотать его вместо испорченного проводника, осуществляя такое же количество витков, которое было смотано. После осуществления этих действий, дроссель устанавливается обратно на свое место и, если все было сделано правильно, устройство должно функционировать.
  5. Термисторы ремонту не подлежат, их просто меняют на новые элементы, чаще всего это осуществляется вместе с предохранителями.
  6. Для профилактики, во время ремонта можно извлечь из устройства кулер и смазать машинным маслом, после чего установить его на место.
  7. Если на поверхности платы были обнаружены трещины, которые повредили соединение контактов, то их необходимо закрыть при помощи пайки. Таким же образом исправляется любое нарушение контактов в резисторе, индукторе или трансформаторе.

Устройство

импульсный блок питания

структурная схема ИБП

импульсный блок питания

Блоки питания подобного типа являются по своей сути разновидностью стабилизаторов напряжения, устройство которых выглядит следующим образом:

  1. Сетевой выпрямитель является одним из основных элементов, который необходим для сглаживания возникающих пульсаций. Также, он требуется для поддержания заряда фильтрующих конденсаторов во включенном режиме и непрекращающейся передаче электроэнергии в нагрузку, если напряжение в главной питающей сети упало ниже допустимых для работы параметров. В его конструкцию входят особые разновидности фильтров, позволяющие подавлять большинство возникающих помех.
  2. Преобразователь напряжения, основными составными частями которого являются конвертор и контроллер управляющего устройства.
  3. Конвертор также имеет сложную структуру, в которую входит трансформатор импульсного типа, инвертор, ряд выпрямителей и стабилизаторов, которые обеспечивают вторичную подпитку и снабжение нагрузки напряжением. Инвертор необходим для изменения формы постоянного выходного напряжения, которое после процесса преобразования становится переменным напряжением с прямоугольной формой. Наличие трансформатора, функционирующего на высоких частотах со значением выше 20 кГц, обусловлено необходимостью поддержания рабочего состояния инвертора в автогенераторном режиме, а также получения напряжения, которое используется для подпитки контроллера, нагрузочных цепей и ряда защитных схем.
  4. Контроллер выполняет функции по управлению транзисторным ключом, который входит в состав инвертора. Помимо этого, он стабилизирует параметры напряжения, подаваемого на нагрузку, и защищает устройство в целом от возможных перегрузок и нежелательных перегревов. Если в блоке питания имеется дополнительная функция, обеспечивающая дистанционное управление устройством, то за ее реализацию также отвечает контроллер.
  5. Контроллер блоков питания подобного типа состоит из целого ряда функциональных узлов, таких как источник, обеспечивающий его бесперебойным питанием; защитная система; модулятор длительности импульсов; логическая схема для обработки сигналов и формирователь особого вида напряжения, предназначенного для поступления на транзисторы, располагающие в конверторе.
  6. В большинстве современных моделей, присутствуют оптроны, используемые в качестве развязки. Они постепенно заменяют собой трансформаторные разновидности развязки, это происходит благодаря тому, что они занимают меньше свободного пространства и обладают возможностью передачи сигналов в гораздо более широком частотном спектре, но при этом требуют значительного количества промежуточных усилителей.

Основные неисправности и их диагностика

импульсный блок питания

Иногда импульсные блоки питания ломаются и их неисправности могут носить самый разный характер, но существует ряд схожих случаев, на основе которых был составлен список наиболее часто встречающихся видов неисправностей:

  1. Нежелательное попадание внутрь устройства пыли, особенно строительной.
  2. Выход из строя предохранителя, чаще всего эта проблема вызывается другой неисправностью – выгоранием диодного моста.
  3. Отсутствие выходного напряжения при работоспособном и исправном предохранителе. Данная проблема может быть вызвана различными причинами, наиболее часто ими является поломка выпрямительного диода, либо перегорание фильтрационного дросселя в низковольтной области схемы.
  4. Выход из строя конденсаторов, чаще всего это случается по следующим причинам: потеря емкости, приводящая к плохому качеству фильтрации напряжения на выходе и повышению уровня рабочих шумов; чрезмерное увеличение параметров последовательного сопротивления; короткое замыкание внутри устройства или разрыв внутренних выводов.
  5. Нарушение соединений контактов, которое чаще всего вызывается трещинами в плате.

Если блок питания по каким-либо причинам вышел из строя, то перед самостоятельным проведением любых работ по устранению неполадок необходимо провести тщательную диагностику, чтобы выявить их причины.

В зависимости от разных ситуаций, эта процедура имеет свои особенности:

  1. Осмотреть блок питания в целом на наличие скопившейся в нем пыли, которая может быть причиной его некорректной работы.
  2. Проверить главную плату на наличие на ее поверхности трещин.
  3. Проведение визуального осмотра основной платы блока питания позволяет определить состояние предохранителей. Заметить поломку будет достаточно просто, этот элемент устройства вздуется или полностью разрушится в случае пробоя. Также рекомендуется сразу провести комплексную проверку силового моста, конденсатора фильтра и всех силовых ключей.
  4. Если предохранитель находится в исправном состоянии, то необходимо проверить дроссель и электролитные конденсаторы, неисправности также элементарно выявляются визуальным методом по возникшим деформациям либо вздутиям. Сложнее осуществляется диагностика диодного моста или отдельных диодов, их потребуется выпаять из схемы и отдельно проверить при помощи тестера или мультиметра.
  5. Проверка конденсатором также осуществляется визуальным методом, поскольку возникшие перегревы могли расплавить электролит и разрушить их корпусы, или при помощи специального прибора, предназначенного для измерения уровня их емкости, если внешних неисправностей выявлено не было.
  6. Провести осмотр термистора, который подвержен частым поломкам из-за скачков напряжения или перегревов. Если его поверхность стала черной, а сам он разрушается от легких прикосновений, значит, причина неполадок именно в нем.
  7. Проверить контакты всех оставшихся элементов (резистора, трансформатора, индуктора) на возможные нарушения соединения.

Советы

импульсный блок питания

Дополнительно при осуществлении диагностики или ремонта импульсных блоков питания рекомендуется следовать следующим советам:

  1. Осуществление самостоятельного ремонта подобных устройств является довольно сложным процессом, который требует определенных навыков и знаний, даже если в наличии имеются подробные инструкции. Поэтому, если отсутствует уверенность в своих силах, лучше обратиться к квалифицированному мастеру, чтобы не нанести блоку питания еще более серьезные поломки.
  2. Перед началом осуществления любых действий с импульсным блоком питания, его необходимо отключить от электросети. При этом, нажатие соответствующей клавиши на самом устройстве не гарантирует полной безопасности во время ремонта, поэтому необходимо осуществить отключение силового шнура.
  3. После того, как блок питания был полностью обесточен, необходимо выждать около 10-15 минут перед началом каких-либо работ. Это время требуется для полной разрядки конденсаторов на плате.
  4. Если требуется проведение паяльных работ, то их необходимо осуществлять крайне осторожно, поскольку перегрев места пайки может вызвать отслоение дорожек, а также существует риск их замыкания припоем. Лучше всего, для этих целей подходят паяльные аппараты с параметром мощности, находящимся в диапазоне 40-50Вт.
  5. Сбор блока питания после окончания ремонта, допускается производить только после внимательного осмотра мест пайки, в частности, требуется проверка замыкание припоем между дорожками.
  6. Рекомендуется обеспечить импульсному блоку питания качественную вентиляцию и охлаждение, которые защитят его загрязнений и перегревов, что минимизирует возможные поломки. Также, не допускается перекрытие вентиляционных отверстий на устройстве.

Статья была полезна?

0,00 (оценок: 0)

Как работают импульсные блоки питания: 7 правил

Домашний мастер часто сталкивается с поломками сложной бытовой техники из-за отказов ее электрической схемы. Не всегда удается сразу выполнить такой ремонт. Часто требуются знания про импульсные блоки питания, принципы работы их составных частей.

Такие работники популярны, всегда востребованы, заслуживают уважения. Однако не все так сложно в этом вопросе, как кажется на первый взгляд.

Я выделил 7 правил, по которым работает любой ИБП, постарался объяснить их простыми словами для новичков. А что получилось — оценивайте сами.

Содержание статьи

Блоки питания — это электротехнические устройства, которые изменяют характеристики промышленной электроэнергии до уровня параметров, необходимых для работы конечных механизмов.

Они подразделяются на трансформаторные и импульсные изделия.

Схема трансформаторного блока питанияСтруктурная схема блока питания

Силовой трансформатор понижает входное напряжение и одновременно обеспечивает гальваническую развязку между электрической энергией первичной и вторичной цепи.

Силовой трансформатор

Трансформаторные модули тратят значительную часть мощности на электромагнитные преобразования и нагрев, имеют повышенные габариты, вес.

Импульсные блоки питания: как работает структурная схема и взаимодействуют ее части — краткое пояснение

Правило №1 всех ИБП: чем выше рабочая частота, тем лучше. Преобразование электроэнергии выполняется не на промышленных 50 герц, а на более высоких сигналах в пределах 1÷100кГц.

За счет этого снижаются потери и общий вес всех элементов, но усложняется технология. Принципы работы импульсного блока питания помогает понять его структурная схема.

Показываю ее составные части прямоугольниками, связи стрелками, а форму выходного сигнала из каждого блока — мнемонической фигурой преобразованного напряжения (темно синий цвет сверху).

Структурная схема импульсного блока питания

Сетевой фильтр пропускает через себя промышленную синусоиду. Одновременно он отделяет из нее все посторонние помехи.

Очищенная от помех синусоида поступает на выпрямитель со сглаживающим фильтром. Он превращает полученную гармонику в сигнал напряжения строго постоянной формы действующей величины.

Следующим этапом начинается работа инвертора. Он из постоянного стабилизированного сигнала формирует высокочастотные колебания уже не синусоидальной, а практически строго прямоугольной формы.

Преобразованная в подобный вид электрическая энергия поступает на силовой высокочастотный трансформатор, который, как и обычный аналоговый, видоизменяет ее на пониженное напряжение с увеличенным током.

После силового трансформатора наступает очередь работы выходного выпрямителя.

Заключительным звеном работает сглаживающий выходной фильтр. После него на блок управления бытового прибора поступает стабилизированное напряжение постоянной величины.

Качество работы импульсного блока поддерживается за счет создания в рабочем состоянии обратной связи, реализованной в блоке управления инвертора. Она компенсирует все посадки и броски напряжения, вызываемые колебаниями входной величины или коммутациями нагрузок.

Пример монтажа деталей показан на фотографии платы импульсного блока питания ниже.

Импульсный блок питания

Сетевой выпрямитель имеет в своем составе предохранитель на основе плавкой вставки, диодный мост, электромеханический фильтр, набор дросселей, конденсаторы развязки со статикой.

Накопительная емкость сглаживает пульсации.

Генератор инвертора на основе силового ключевого транзистора
в комплекте с импульсным трансформатором выдает напряжение на выходной
выпрямитель с диодами, конденсаторами и дросселями.

Оптопара в узле обратной связи обеспечивает оптическую развязку электрических сигналов.

Разберем все эти части подробнее.

Схемы сетевых фильтров импульсных и высокочастотных помех: 4 типа конструкций

Правило №2: у качественных ИБП в конструкции блока должен работать надежный фильтр в/ч сигналов.

Важно понимать, что импульсы высокой частоты играют двоякую роль:

  1. в/ч помехи могут приходить из бытовой сети в блок питания;
  2. импульсы высокочастотного тока генерируются встроенным преобразователем и выходят из него в домашнюю проводку.

Причины появления помех в бытовой сети:

  • апериодические составляющие переходных процессов, возникающие от коммутации мощных нагрузок;
  • работы близкорасположенных приборов с сильными электромагнитными полями, например, сварочных аппаратов, мощных тяговых электродвигателей, силовых трансформаторов;
  • последствия погашенных импульсов атмосферных разрядов и других факторов, включая наложение высокочастотных гармоник.

Помехи ухудшают работу радиоэлектронной аппаратуры, мобильных устройств и цифровых гаджетов. Их необходимо подавлять и блокировать внутри конструкции импульсного блока питания.

Основу фильтра составляет дроссель, выполненный двумя обмотками на одном сердечнике.

Дроссели фильтров

Дроссели могут быть выполнены разными габаритами, намотаны толстой или тонкой проволокой на больших или маленьких сердечниках.

Начинающему мастеру достаточно запомнить простое правило: лучше работает фильтр с дросселем большого магнитопровода, увеличенным числом витков и поперечным сечением проволоки. (Принцип: чем больше — тем и лучше.)

Дроссель обладает индуктивным сопротивлением, которое резко ограничивает высокочастотный сигнал, протекающий по проводу фазы или нуля. В то же время оно не оказывает особого влияния на ток бытовой сети.

Работу дросселя эффективно дополняют емкостные сопротивления.

Конденсаторы для ВЧ фильтров

Конденсаторы подобраны так, что закорачивают ослабленные дросселем в/ч сигналы помех, направляя их на потенциал земли.

Принцип работы фильтра в/ч помех от проникновения на блок питания входных сигналов показан на картинке ниже.

Как работает фильтр

Между потенциалами земли с нулем и фазой устанавливают Y конденсаторы. Их конструктивная особенность — они при пробое не способны создать внутреннее короткое замыкание и подать 220 вольт на корпус прибора.

Между цепями фазы и нуля ставят конденсаторы, способные выдерживать 400 вольт, а лучше — 630. Они обычно имеют форму параллепипеда.

Однако следует хорошо представлять, что ИБП в преобразователе напряжения сами выправляют сигнал и помехи им практически не мешают. Поэтому такая система актуальна для обычных аналоговых блоков со стабилизацией выходного сигнала.

Самодельный блок питания

У импульсного блока питания важно предотвратить выход в/ч помех в бытовую сеть. Эту возможность реализует другое решение.

Фильтр ВЧ помех

Как видите, принцип тот же. Просто емкостные сопротивления всегда располагаются по пути движения помехи за дросселем.

Фильтр ВЧ

Третья схема в/ч фильтра считается универсальной. Она объединила элементы первых двух. Y конденсаторы в ней просто работают с двух сторон каждого дросселя.

Универсальный фильтр

У самых дорогих и надежных устройств используется сложный фильтр с дополнительно подключенными дросселями и конденсаторами.

Сложный фильтр

Сразу же показываю схему расположения фильтров на всех цепочках блока питания: входе и выходе.

Схема фильтра

Обратите внимание, что на кабель, выходящий из ИБП и подключаемый к электронному прибору, может быть дополнительно установлен ферритовый фильтр, состоящий из двух разъемных полуцилиндров или выполненный цельной конструкцией.

Ферритовый фильтр

Примером его использования является импульсный блок питания ноутбука. Это уже четвертый вариант применения фильтра.

Ферритовый фильтр на кабеле

Сетевой выпрямитель напряжения: самая популярная конструкция

Правило №3: после выхода с фильтра напряжение подается на схему выпрямителя, состоящего в базовой версии из диодного моста и электролитического конденсатора.

В ходе электрического преобразования форма синусоиды, состоящая из полуволн противоположных знаков, вначале меняется на сигнал положительного направления после диодной сборки, а затем эти пульсации сглаживаются до практически постоянной амплитудной величины 311 вольт.

Схема выпрямителя

Такой сетевой выпрямитель напряжения заложен в работу всех блоков питания.

Преобразователь импульсного напряжения: объяснение простыми словами с поясняющими картинками

Правило №4: выпрямленный сигнал подвергается широтно-импульсной модуляции на силовом ключе под управлением ШИМ контроллера.

Силовой ключ выполняется первичной обмоткой высокочастотного трансформатора. Для эффективной трансформации в/ч импульсов до 100 килогерц конструкцию магнитопровода делают из альсифера или ферритов.

Схема управления силовым ключом

На обмотку трансформатора от цепей управления через в/ч транзистор поступают импульсы сигналов в несколько десятков килогерц.

ШИМ импульсы

Прямоугольные импульсы тока подаются по времени, чередуются с паузами, обозначаются единицей (1) и нулем (0).

Продолжительность протекания импульса или его ширина в каждый момент низкочастотного синусоидального напряжения соответствует его амплитуде: чем она больше, тем шире ШИМ. И наоборот.

ШИМ контроллер отслеживает величину подключенной нагрузки на выходе импульсного блока питания. По ее значению он вырабатывает импульсы, кратковременно открывающие силовой транзистор.

Если подключенная к ИБП мощность начинает возрастать, то схема управления увеличивает длительность импульсов управления, а когда она снижается, то — уменьшает.

За счет работы этой конструкции производится стабилизация напряжения на выходе блока в строго определенном диапазоне.

Импульсный трансформатор: принцип работы одного импульса в 2 такта

Правило №5: импульсный трансформатор для блока питания передает каждый ШИМ импульс за счет двух преобразований электромагнитной энергии.

Во время преобразования электрической энергии в магнитную и обратно в электрическую с пониженным напряжением обеспечивается гальваническое разделение первичных входных цепей с вторичной выходной схемой.

Каждый ШИМ импульс тока, поступающий при кратковременном открытии силового транзистора, протекает по замкнутой цепи первичной обмотки трансформатора.

Его энергия расходуется:

  1. вначале на намагничивание сердечника магнитопровода;
  2. затем на его размагничивание с протеканием тока по вторичной обмотке и дополнительной подзарядкой конденсатора.
Как работает импульсный трансформатор

По этому принципу каждый ШИМ импульс из первичной сети подзаряжает накопительный конденсатор.

Генераторы ИБП могут работать по простой однотактной или более сложной двухтактной технологии построения.

Однотактная схема импульсного блока питания: состав и принцип работы

На стороне 220 расположены: предохранитель, выпрямительный диодный мост, сглаживающий конденсатор, биполярный транзистор, цепочки колебательного контура и коллекторного тока, а также обмотки импульсного трансформатора.

Схема электронного генератора

Однотактная схема импульсного блока питания создается для передачи мощности 10÷50 ватт, не более. По ней изготавливают зарядные устройства мобильных телефонов, планшетов и других цифровых гаджетов.

В выходной цепочке трансформатора используется выпрямительный диод Д7. Он может быть включен в прямом направлении, как показано на картинке, или обратно, что важно учитывать.

При прямом включении импульсный трансформатор накапливает индуктивную энергию и передает ее в выходную цепь к подключенной нагрузке с задержкой по времени.

Если диод включен обратно, то трансформация энергии из первичной схемы во вторичную цепь происходит во время закрытого состояния транзистора.

Однотактная схема ИБП отмечается простотой конструкции, но большими амплитудами напряжения, приложенными к виткам первичной обмотки импульсного трансформатора.

Их защита осуществляется дополнительными цепочками из
резисторов R2÷R4 и конденсаторов С2, С3.

Двухтактная схема импульсного блока питания: 3 варианта исполнения

Более высокий КПД и пониженные потери мощности являются неоспоримыми преимуществами этих ИБП по сравнению с однотактными моделями.

Простейший вариант исполнения двухполупериодной методики показан на картинке.

Двухполупериодная схема

Если в нее дополнительно подключить два диода и один сглаживающий конденсатор, то на этом же трансформаторе получается двухполярная схема.

Двухполярная схема питания

Она распространена в усилителях мощности, работает по обратноходовому принципу. В ней через каждую емкость протекают меньшие токи, обеспечивающие повышенный ресурс конденсаторов при эксплуатации.

Продлить ресурс работы электролитических конденсаторов в ИБП можно заменой одного большой мощности несколькими составными. Ток будет распределяться по всем, что вызовет меньший нагрев. А отвод тепла с каждого отдельного происходит лучше.

Прямоходовая схема блока питания имеет в своей конструкции дроссель, который выполняет функцию накопления энергии. Для этого два диода направляют поступающие импульсы ШИМ на его вход в одной полярности.

Прямоходовая схема блока питания

Дроссель этих устройств изготавливается большими габаритами и устанавливается отдельно внутри платы ИБП. Он дополняет работу накопительного конденсатора.

Это наглядно видно по верхней форме сигнала, показанного осциллограммой выпрямления одного и того же блока без дросселя и с ним.

Как работает дроссель

Прямоходовая схема используется в мощных блоках питания, например, внутри компьютера.

В ней выпрямлением тока занимаются диоды Шоттки. Их применяют за счет:

  • уменьшенного падения напряжения на прямом включении;
  • и повышенного быстродействия во время обработки высокочастотных импульсов.

3 схемы силовых каскадов двухтактных ИБП

По порядку сложности их исполнения генераторы выполняют по:

  • полумостовому;
  • мостовому;
  • или пушпульному принципу построения выходного каскада.

Полумостовая схема импульсного блока питания: обзор

Конденсаторы С1, С2 собраны последовательно емкостным делителем. На него и переходы коллектор-эмиттер транзисторов Т1, Т2 подается напряжение постоянного питания.

Полумостовая схема

К средней точке емкостного делителя и транзисторов подключена первичная обмотка трансформатора Тр2. С ее вторичной обмотки снимается выходное напряжение генератора, которое пропорционально входному сигналу ТР1, трансформируемому на базы Т1 и Т2.

Полумостовая схема ИБП работает для нагрузок от нескольких ватт до киловатт. Ее недостатком является возможность повреждения элементов при перегрузках, что требует использования сложных защит.

Мостовая схема импульсного блока питания: краткое пояснение

Вместо емкостного делителя предыдущей технологии здесь работают транзисторы T3 и T4. Они попарно открываются совместно с Т1 и Т2: (пара Т1-Т4), (пара Т2-Т3).

Мостовая схема

Напряжение переходов эмиттер-коллектор у закрытых транзисторов не выше величины питающего напряжения, а на обмотке w1 ТР3 оно возрастает до значения U пит. За счет этого увеличивается величина КПД.

Мостовая схема сложна в наладке из-за трудностей с настройкой цепей управления транзисторов Т1÷Т4.

Пушпульная схема: важные особенности

Первичная обмотка выходного ТР2 имеет средний вывод, на который подается плюсовой потенциал источника питания, а его минус — на среднюю точку вторичной обмотки Т1.

Пушпульная схема

Во время прохождения одного полупериода колебания работает один из транзисторов Т1 или Т2 и соответствующая ему часть полуобмотки трансформатора.

Здесь создается самый высокий КПД, малые пульсации и низкие помехи. Амплитудное значение импульсного напряжения на любой половине обмотки w1 ТР2 достигает величины U пит.

К напряжению перехода коллектор-эмиттер каждого транзистора добавляется ЭДС самоиндукции, и оно возрастает до 2U пит. Поэтому Т1 и Т2 надо подбирать на 600÷700 вольт.

Пушпульная схема ключевого каскада пользуется большей популярностью. Она применяется в наиболее мощных преобразователях.

Выходной выпрямитель: самое популярное устройство

Правило №6: сигнал, поступающий с выхода ИБП, выпрямляется и сглаживается.

Простейшая схема выпрямителя, состоящая из диода и накапливающего конденсатора, показана картинкой ниже.

Простая схема выпрямителя

Она может дорабатываться подключением дополнительных конденсаторов, дросселей, элементов фильтров.

Схема стабилизации напряжения: как работает

Правило №7: оптимальные условия для работы нагрузки при изменяющихся условиях эксплуатации обеспечивает принцип стабилизации вторичного напряжения.

Самая примитивная схема стабилизации выходного напряжения создается на дополнительной обмотке импульсного трансформатора.

Простая схема стабилизации напряжения

С нее снимается напряжение и подается для корректировки величины сигнала первичной обмотки.

Лучшая стабилизация создается за счет контроля выходного сигнала с вторичной обмотки и отделения его гальванической связи через оптопару.

Схема импульсного блока питания

В ней используется светодиод, через который проходит ток, пропорциональный значению выходного напряжения. Его свечение воспринимается фототранзистором, который посылает соответствующий электрический сигнал на схему управления генератора ключевого каскада.

Как работает оптопара

Повысить качество стабилизации выходного напряжения позволяет последовательное дополнение к оптопаре стабилитрона, как показано на примере микросхемы TL431 на картинке ниже.

Схема стабилизации

Для закрепления материала в памяти рекомендую посмотреть видеоролик владельца Паяльник TV, который хорошо объясняет информацию про импульсные блоки питания: принципы работы на примере конкретной модели.

Надеюсь, что моя статья поможет вам выполнить ремонт ИБП своими руками за 7 шагов, которые я изложил в другой статье.

Задавайте возникшие вопросы в разделе комментариев, высказывайте свое мнение. Его будет полезно знать другим людям.

Ремонт импульсных блоков питания своими руками

Неисправности современных импульсных блоков питания

Часто причины отказов импульсных источником напряжения кроется в некачественном сетевом напряжении. Понижение и повышение напряжения сети, скачки напряжения, отключение сети, негативно сказываются на надежности электронных компонентов схем питания.

Импульсный блок питания

Особенно болезненно переносят такие скачки и отключения сети — это силовые диоды, мощные транзисторы, ШИМ контроллеры, конденсаторы. Хорошо, когда у вас преобразователь напряжения выполнен без заливки компаундом. Ремонт таких импульсных блоков питания можно сделать своими руками.

Все чаще появляются источники напряжения, залитые компаундом. Их не берут на ремонт даже в специализированных мастерских. Для них только один вариант ремонта — это замена новым. Неправильная эксплуатация этих источников, подключение более мощных нагрузок, также могут быть причиной их выхода из строя.

Не нужно эти преобразователи сразу отдавать в ремонт, причины их отказа могут быть довольно простыми, и вы с легкостью с ними справитесь. Для более сложных неисправностей нужны некоторые познания в электронике. Опыт в ремонте приходит со временем, чем вы больше будете им заниматься, тем больше обретете знаний.

Диагностика неисправностей импульсных блоков питания

Самое главное в ремонте — это найти неисправность, а устранить ее дело техники. Схемотехнику импульсных источников питания можно разделить на входную и выходную части. К входной части относится высоковольтная схема, а к выходной низковольтная.

Простой импульсный блок питания

В высоковольтной ее части платы все элементы работают под высоким напряжением, поэтому они чаще выходят из строя, чем элементы низковольтной части. Высоковольтная схема имеет сетевой фильтр, диодные мосты для выпрямления переменного напряжения сети, ключи на транзисторах и импульсный трансформатор.

Используются ещё и небольшие развязывающие трансформаторы, которые управляются ШИМ контроллерами и подают импульсы на затворы полевых транзисторов. Таким образом, происходит гальваническая развязка сетевых и вторичных напряжений. Для такой развязки часто в современных схемах используются оптроны.

Схема импульсного блока питания на транзисторах

Выходные напряжения также имеют гальваническую развязку с сетью через силовой трансформатор.  В простых схемах преобразования вместо ШИМ контроллеров используют автогенераторы на транзисторах. Эти дешевые источники напряжения применяются для питания галогенных ламп, светодиодных ламп и т. д.

Особенностью таких схем является простота и минимум элементов. Однако простые и дешевые источники напряжения без нагрузки не запускается, выходное напряжение нестабильно и имеют повышенные пульсации. Хотя на освещение галогенных ламп эти параметры влияния не оказывают.

Диодный мост импульсного блока питания АТХ

Ремонт такого устройства очень прост из-за небольшого количества элементов. Наиболее часто возникают неисправности в высоковольтной части схемы, когда пробивается один или несколько диодов, вспучиваются электролитические конденсаторы, отказывают силовые транзисторы. Также выходят из строя диоды низковольтной схемы, перегорают дросселя выходного фильтра и предохранитель.

Неисправность этих элементов можно обнаружить мультиметром. Другие же неисправности импульсных блоков требуют применения осциллографа, цифрового мультиметра. В этом случае лучше отдать блок на ремонт в мастерскую. Предохранитель можно легко прозвонить мультиметром на наличие напряжения после предохранителя.

Предохранитель импульсного блока питания

Если перегорел предохранитель нужно внимательно визуально проверить всю схему платы, дорожки, нарушение паек, потемнение элементов схемы и участков дорожек, вспучивание конденсаторов. Если диоды плохо прозваниваются мультиметром на плате, их выпаивают, и проверяет каждый в отдельности.

Проверяются все элементы платы, неисправный меняют и только тогда включается блок в сеть для проверки. При диагностике конденсаторы тоже выпаиваются и проверяются тестером. Сгоревший дроссель можно перемотать, определив количество витков, сечение провода. Найти необходимый дроссель в продаже будет нелегко, лучше его восстановить самому.

Ремонт блоков ИБП компьютеров и телевизоров

Для ремонта источника импульсного напряжения понадобится такие инструменты как паяльник с регулировкой температуры, набор отвёрток, кусачки, пинцет, монтажный нож, обычная лампа на 100 Вт. Из материала понадобится припой, флюс, спирт для удаления канифоли кисточкой с паек платы. Из приборов нужен будет мультиметр.

Так как импульсные блоки питания (ИБП) телевизоров и компьютеров имеют стандартные схемы, то и методика обнаружения неисправностей в них будет одинакова. Нарушение работы преобразователя напряжения телевизора можно определить по отсутствию подсветки светодиода.

Блок питания компьютера АТХ

Начинают ремонт с проверки сетевого шнура, снятия блока питания с телевизора, внимательного осмотра элементов и дорожек платы. Ищут вздутые конденсаторы, потемнение дорожек, треснутый корпус алиментов, обугливание сопротивлений, нарушение целостности паек, особенно у выводов импульсного трансформатора.

Если внешних повреждений не найдено мультиметром, проверяют предохранитель, диоды, силовые транзисторы ключей, работоспособность конденсаторов. Когда вы уверены в исправности всех элементов, а устройство не работает, нужно менять микросхему генератора импульсов.

В преобразователе телевизора основные неисправности возникают в балластных резисторах, электролитических конденсаторах низкого напряжения, диодах. Прозвонить их можно не снимая с плат (кроме диодов). После устранения неисправностей припаивают лампу 100 Вт взамен предохранителя и включают.

  1. Лампа загорается и гаснет, появляется свечение светодиода спящего режима. Светится экран телевизора. Тогда проверяют напряжение строчной развертки, если оно, выше нормы меняют конденсаторы.
  2. Лампа загорается и тухнет, а светодиод не светится, нет растра. Причина, скорее всего в генераторе импульсов. Меряют напряжение на конденсаторе, которое должно находиться в пределах 280 — 300В. Если напряжение ниже, неисправность ищут в диодах или в утечке конденсатора. При отсутствии напряжения на конденсаторе, снова проверяют все цепи высоковольтных источников питания.
  3. Лампа горит ярко при неисправности некоторых элементов. Источник напряжения проверяют заново.

С помощью лампы накаливания можно находить вероятные неисправности источника. Для ремонта источника АТХ компьютера, нужно собрать схему нагрузки как на рисунке ниже или подключить к компьютеру. Однако, если неисправность блока АТХ на устранена можно спалить материнскую плату.

Вариант нагрузки для БП компьютера

Внешнее проявление отказа блока ATX может быть, когда не включается материнская плата, вентиляторы не работают или блок пытается многократно включиться. Перед поиском неисправностей устройства нужно пылесосом и кисточкой очистить его от пыли. Также проводится визуальный осмотр элементов, дорожек платы и только после этого включается нагрузка.

Если перегорает предохранитель, тогда подключают лампу накаливания 100 Вт, как при проверке источника напряжения в телевизоре. Когда лампа загорается, но не гаснет, неисправность ищут в конденсаторе, трансформаторе и диодах моста. При целом предохранителе неисправность могла возникнуть в ШИМ контроллере, тогда необходимо заменить устройство. Также многократный запуск источника указывает на неисправность стабилизатора опорного напряжения.

Техника безопасности при ремонте импульсного блока питания

Высокая сторона устройства не имеет гальванической развязки с сетью, поэтому нельзя прикасаться к элементам этой части двумя руками. При касании одной рукой вы получите ощутимый удар током, но это не смертельно. Нельзя проверять элементы, находящиеся под напряжением отверткой, пинцетом.

Высоковольтная схема устройства обозначается широкой полосой, а внутренняя часть мелкими штрихами краски. Устройство имеет высоковольтный конденсатор, который после выключения блока держит опасное напряжение до 3 минут. Поэтому после выключения нужно ждать пока конденсаторы не разрядятся или их разрядить через резистор 3 — 5 Ком. Повысить безопасность при ремонте устройства можно с помощью трансформатора безопасности.

Схема трансформатора безопасности

Этот трансформатор имеет две обмотки на 220 В мощностью до 200 Вт (зависит от мощности ИБП). Такой трансформатор имеет гальваническую развязку с сетью. Первичная обмотка трансформатора включается в сеть, а вторичная с лампой подсоединяется к ИБП. В этом случае вы можете прикасаться к элементам высокой части устройства одной рукой, вы не получите удар током.

Тоже интересные статьи

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *